ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH
LHSRSM


Checkers
GP: 3 | W: 0 | L: 3
GF: 7 | GA: 18 | PP%: 33.33% | PK%: 60.00%
DG: Christopher Dorion | Morale : 50 | Moyenne d'Équipe : 61
Prochain matchs #27 vs Senators
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Anthony PelusoX100.00684882598874735854575760597971050620301650,000$
2Corey TroppX100.00596266617382835958605756617971050610301650,000$
3Nick LappinX100.00584289607279736154585962607565050610261700,000$
4Taylor LeierX100.00534588606881836256586159607166050610251700,000$
5Cole BardreauX100.00574387596771695754565855577368050600262700,000$
6Colton BeckX100.00554590537086885252545553557870050590291675,000$
7Myles PowellX100.00533985586471735755565453587166050580251650,000$
8Josh MelnickX100.00533987575676785664555251576965026570241925,000$
9Mark AltX100.00654789598776745830575760537779050620271725,000$
10Chad RuhwedelX100.00763984607178675930585566487869050620292700,000$
11Keaton ThompsonX100.00564886577183845630555153456965050580241650,000$
12Blake HillmanX100.00614589547681835230515153466764046570231650,000$
Rayé
1Byron FroeseXX100.00645383637885866272606164627779050640281700,000$
MOYENNE D'ÉQUIPE100.0060468558727978584957565755746904860
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Igor Shesterkin100.0081747277807981807981806973050680
2Adam Carlson100.0061525083605961605961607175050580
Rayé
MOYENNE D'ÉQUIPE100.007163618070697170697170707405063
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Chad RuhwedelCheckers (CAR)D3224-26011461633.33%125618.991013200000000.00%000001.4000000000
2Cole BardreauCheckers (CAR)C3033000156140.00%25719.1300012000000050.00%8800001.0500000000
3Anthony PelusoCheckers (CAR)RW31230004411269.09%36421.5200012000030047.37%1900000.9300000000
4Taylor LeierCheckers (CAR)LW330310041133923.08%35618.6900002000000025.00%800001.0700000010
5Corey TroppCheckers (CAR)RW3112-7007513477.69%36822.9401102000030085.71%700000.5800000000
6Colton BeckCheckers (CAR)LW3022-7001110360.00%16220.9101102000040055.56%900000.6400000000
7Mark AltCheckers (CAR)D3022-3201654020.00%207123.670001200002000.00%000000.5600000000
8Myles PowellCheckers (CAR)LW3011-3007210340.00%25418.1800000000010050.00%200000.3700000000
9Nick LappinCheckers (CAR)RW3011-4005319880.00%45919.6800000000000060.00%1000000.3400000000
10Keaton ThompsonCheckers (CAR)D3000-500622100.00%64715.970000000000000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne3071421-308062329426527.45%5659919.971236180000190051.05%14300000.7000000010
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Igor ShesterkinCheckers (CAR)30300.8996.0018020181790000.000030000
Stats d'équipe Total ou en Moyenne30300.8996.0018020181790000.000030000


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Adam CarlsonCheckers (CAR)G251994-02-13No196 Lbs6 ft3NoNoNo1Pro & Farm925,000$0$0$NoLien
Anthony PelusoCheckers (CAR)RW301989-04-18No225 Lbs6 ft3NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Blake HillmanCheckers (CAR)D231996-01-26No193 Lbs6 ft1NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Byron FroeseCheckers (CAR)C/RW281991-03-12No202 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Chad RuhwedelCheckers (CAR)D291990-05-07No191 Lbs5 ft11NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien / Lien NHL
Cole BardreauCheckers (CAR)C261993-07-22No185 Lbs5 ft10NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien / Lien NHL
Colton BeckCheckers (CAR)LW291990-06-10No187 Lbs5 ft11NoNoNo1Pro & Farm675,000$0$0$NoLien / Lien NHL
Corey TroppCheckers (CAR)RW301989-07-25No192 Lbs6 ft0NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Igor ShesterkinCheckers (CAR)G231995-12-30No182 Lbs6 ft2NoNoNo2Pro & Farm3,775,000$0$0$No3,775,000$Lien
Josh MelnickCheckers (CAR)C241995-07-10No175 Lbs5 ft1NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Keaton ThompsonCheckers (CAR)D241995-09-14No182 Lbs6 ft0NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Mark AltCheckers (CAR)D271991-10-18No201 Lbs6 ft4NoNoNo1Pro & Farm725,000$0$0$NoLien / Lien NHL
Myles PowellCheckers (CAR)LW251994-07-24No174 Lbs5 ft9NoNoNo1Pro & Farm650,000$0$0$NoLien
Nick LappinCheckers (CAR)RW261992-11-01No175 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Taylor LeierCheckers (CAR)LW251994-02-15No180 Lbs5 ft11NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1526.27189 Lbs6 ft01.20918,333$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Taylor LeierCole BardreauAnthony Peluso30122
2Colton BeckCorey Tropp30122
3Myles PowellNick Lappin25122
4Corey TroppAnthony PelusoNick Lappin15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark Alt30122
2Chad Ruhwedel30122
3Keaton Thompson25122
4Mark Alt15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Taylor LeierCole BardreauAnthony Peluso60122
2Colton BeckCorey Tropp40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark Alt60122
2Chad Ruhwedel40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Anthony PelusoCorey Tropp60122
2Nick LappinTaylor Leier40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark Alt60122
2Chad Ruhwedel40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Anthony Peluso60122Mark Alt60122
2Corey Tropp40122Chad Ruhwedel40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Anthony PelusoCorey Tropp60122
2Nick LappinTaylor Leier40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark Alt60122
2Chad Ruhwedel40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Taylor LeierCole BardreauAnthony PelusoMark Alt
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Taylor LeierCole BardreauAnthony PelusoMark Alt
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Myles Powell, Cole Bardreau, Colton BeckMyles Powell, Cole BardreauColton Beck
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Keaton Thompson, , Chad RuhwedelKeaton Thompson, Chad Ruhwedel
Tirs de Pénalité
Anthony Peluso, Corey Tropp, Nick Lappin, Taylor Leier, Cole Bardreau
Gardien
#1 : Igor Shesterkin, #2 : Adam Carlson


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Senators30300000718-111010000025-320200000513-800.000714210013309531352901795810653133.33%5260.00%0349735.05%4413732.12%235938.98%553688193516
Total30300000718-111010000025-320200000513-800.000714210013309531352901795810653133.33%5260.00%0349735.05%4413732.12%235938.98%553688193516
_Since Last GM Reset30300000718-111010000025-320200000513-800.000714210013309531352901795810653133.33%5260.00%0349735.05%4413732.12%235938.98%553688193516
_Vs Conference30300000718-111010000025-320200000513-800.000714210013309531352901795810653133.33%5260.00%0349735.05%4413732.12%235938.98%553688193516

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
30L3714219517958106500
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
3030000718
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
101000025
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
2020000513
Derniers 10 Matchs
WLOTWOTL SOWSOL
030000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
3133.33%5260.00%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
31352901330
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
349735.05%4413732.12%235938.98%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
553688193516


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2021-04-063Checkers3Senators5LSommaire du Match
3 - 2021-04-0811Checkers2Senators8LSommaire du Match
5 - 2021-04-1019Senators5Checkers2LSommaire du Match
7 - 2021-04-1227Senators-Checkers-
9 - 2021-04-1435Checkers-Senators-
11 - 2021-04-1643Senators-Checkers-
13 - 2021-04-1851Checkers-Senators-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacitéPopularité de l'Équipe
40 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
0$ 1,377,500$ 325,000$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 0$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 8 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
2823632062422582342441211303112134113214115190313012412137225843969706100886016269888892785851269674668612433616618.28%2313883.55%21334264250.49%1319288345.75%614127648.12%1840125720736371054507
3823732034152372231441151802213113120-7412214012021241032174237423660249179637257685784784555259177269813913175717.98%2764782.97%11480274353.96%1410278850.57%679129052.64%1952134719626051050524
4822340001126180191-1141141500093968313419250013384108-244618029947933614463192074686697666982774811119120385569016.19%4976986.12%7949261636.28%1160336734.45%412112936.49%1905126920896521016497
58296701311162419-257414340101182209-127415330030080210-130181622864480266583622010685661650194556127926215071673722.16%962475.00%1660193134.18%963323729.75%415133531.09%12638632765572909376
682274801222227327-10041152101220129147-184112270000298180-82542273936202276806852874945919992384762133929522561913920.42%1232480.49%4948263036.05%1375415633.08%457129535.29%150110282499585945418
782225006031268329-6141122303021154164-1041102703010114165-514426843670460998674123223100410851106454038117138322392094822.97%1664672.29%21118293938.04%1216361233.67%476137034.74%171912122266575970453
882382902436354258964122130112218412955411616013141701294176354605959241391347611352010471244120269331688935319311594125.79%1452682.07%51423287849.44%1556324847.91%656137647.67%204715131960536974489
882382902436354258964122130112218412955411616013141701294176354605959241391347611352010471244120269331688935319311594125.79%1452682.07%51423287849.44%1556324847.91%656137647.67%204715131960536974489
982343402011130127724412014000611541262841142002050147151-4953015198201211210274203026953104499184335198639921092045125.00%1674970.66%41114295637.69%1227335936.53%482137535.05%1866130420985791021494
Total Saison Régulière73826436102320403023412516-17536914516401272615123012201036911919701113141511111296-185555234140056346182788380559010325521811286688512528314008882462016645232347020.23%184634981.09%31104492421343.15%117822989839.41%48471182241.00%161441131119675528189164251
Séries
21899000004750-3844000002122-11055000002628-21847791260118131605551881731877624170105239931617.20%471176.60%026657945.94%28668241.94%11226442.42%406278452143226108
31257000002835-751400000812-4743000002023-310285078011013413621031211092940811814825047612.77%671577.61%225040861.27%26445158.54%11519459.28%3212183089817086
930300000718-111010000025-320200000513-80714210013309531352901795810653133.33%5260.00%0349735.05%4413732.12%235938.98%553688193516
Total Séries3314190000082103-211459000003139-819910000005164-13288214322502292923110123223293253612113462635541432316.08%1192876.47%2550108450.74%594127046.77%25051748.36%783533849262432211