ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH

Checkers

GP: 80 | W: 42 | L: 29 | OTL: 9 | P: 93
GF: 347 | GA: 253 | PP%: 25.49% | PK%: 82.14%
DG: Sebastien Payette | Morale : 50 | Moyenne d'Équipe : 61
Prochain matchs #1255 vs Monsters
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Corey TroppX100.00574565627290856164596057617870012620
2Matthew HighmoreXXX100.00563788637072686170625658546563042610
3Nick LappinX100.00593692607284695858565759557367020610
4Zack MitchellXX100.00623787587792885761565658537166050610
5Anthony PelusoX100.00644579558871635452565357557870050590
6Chad RuhwedelX100.00793688627174596130605963487770050630
7Mark AltX100.00603692598779705830555460467568026610
8Matt TaorminaX100.00543789556880745430555253468273050590
9Blake HillmanX100.00613690547690855330525153466563050580
10Keaton ThompsonX100.00563982557190855430535152456764050580
11Zachary LeslieX100.00634464527277805230535158557366010570
Rayé
MOYENNE D'ÉQUIPE100.0061398358758275574456555751736703760
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1John Muse100.0078666469777678777678777985050670
Rayé
MOYENNE D'ÉQUIPE100.007866646977767877767877798505067
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Zack MitchellCheckers (CAR)C/RW804968117511201812855031603669.74%39166220.7841014391141014705257.38%210700021.4116000875
2Chad RuhwedelCheckers (CAR)D80217596395003081202107616310.00%126180422.565712551220221106110.00%100011.0601000523
3Matthew HighmoreCheckers (CAR)C/LW/RW674649955320014821843810825410.50%40151622.643811471101015725364.07%106600021.2508000476
4Nick LappinCheckers (CAR)RW64524395392409516944712732711.63%32129420.23681444901014413157.45%9400041.4703000445
5Anthony PelusoCheckers (CAR)RW80464490456102772124951373489.29%86140117.522138250113249164.66%11600031.28130021072
6Corey TroppCheckers (CAR)RW534642886137151821283369625413.69%14122323.0826822851235959162.55%54200071.4427012944
7Keaton ThompsonCheckers (CAR)D8012627426320988813345939.02%102158419.8029113892000099100.00%100000.9300000113
8Blake HillmanCheckers (CAR)D801653693330014775129548812.40%117164020.51710173511910121090166.67%300000.8401000113
9Matt TaorminaCheckers (CAR)D801243553680616412848909.38%115178022.26549371230111120200.00%000000.6200000020
10Mark AltCheckers (CAR)D46133548-7809741109364511.93%7681517.733252228000021000.00%000001.1800000022
11Travis BoydHurricanesC2010142411140299813228877.58%744822.410448270110331062.21%68800011.0701000012
12Taylor LeierHurricanesLW21911201620152379205011.39%836917.5900000000003060.00%1500001.0800000201
13Zachary LeslieCheckers (CAR)D16210125603818317216.45%1427116.950000000008000.00%000000.8811000011
Stats d'équipe Total ou en Moyenne76733454988336729925167615393170942218610.54%7761581420.623969108355940571225804391060.41%4633000201.12531014443937
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1John MuseCheckers (CAR)80422890.9243.0146418423330670320.78132800754
Stats d'équipe Total ou en Moyenne80422890.9243.0146418423330670320.78132800754


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Anthony PelusoCheckers (CAR)RW291989-04-18No225 Lbs6 ft3NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Blake HillmanCheckers (CAR)D221996-01-26No193 Lbs6 ft1NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Chad RuhwedelCheckers (CAR)D281990-05-07No191 Lbs5 ft11NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Corey TroppCheckers (CAR)RW291989-07-25No186 Lbs6 ft0NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
John MuseCheckers (CAR)G301988-08-01No185 Lbs5 ft11NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Keaton ThompsonCheckers (CAR)D231995-09-14No182 Lbs6 ft0NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Mark AltCheckers (CAR)D261991-10-18No201 Lbs6 ft4NoNoNo2Pro & Farm725,000$0$0$No725,000$Lien / Lien NHL
Matt TaorminaCheckers (CAR)D311986-10-20No189 Lbs5 ft10NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Matthew HighmoreCheckers (CAR)C/LW/RW221996-02-27No188 Lbs5 ft11NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien / Lien NHL
Nick LappinCheckers (CAR)RW251992-11-01No175 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Zachary LeslieCheckers (CAR)D241994-01-31No195 Lbs6 ft0NoNoNo1Pro & Farm675,000$0$0$NoLien / Lien NHL
Zack MitchellCheckers (CAR)C/RW251993-01-07No196 Lbs6 ft1NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1226.17192 Lbs6 ft01.17731,250$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Matthew HighmoreCorey Tropp30122
2Zack MitchellNick Lappin30122
3Anthony Peluso25122
4Nick LappinCorey TroppMatthew Highmore15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Chad RuhwedelMark Alt30122
2Matt TaorminaBlake Hillman30122
3Keaton ThompsonZachary Leslie25122
4Chad RuhwedelMark Alt15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Matthew HighmoreCorey Tropp60122
2Zack MitchellNick Lappin40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Chad RuhwedelMark Alt60122
2Matt TaorminaBlake Hillman40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Corey TroppNick Lappin60122
2Matthew HighmoreZack Mitchell40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Chad RuhwedelMark Alt60122
2Matt TaorminaBlake Hillman40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Corey Tropp60122Chad RuhwedelMark Alt60122
2Nick Lappin40122Matt TaorminaBlake Hillman40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Corey TroppNick Lappin60122
2Matthew HighmoreZack Mitchell40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Chad RuhwedelMark Alt60122
2Matt TaorminaBlake Hillman40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Matthew HighmoreCorey TroppChad RuhwedelMark Alt
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Matthew HighmoreCorey TroppChad RuhwedelMark Alt
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Anthony Peluso, Zack Mitchell, Matthew HighmoreAnthony Peluso, Zack MitchellMatthew Highmore
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Keaton Thompson, Zachary Leslie, Matt TaorminaKeaton ThompsonZachary Leslie, Matt Taormina
Tirs de Pénalité
Corey Tropp, Nick Lappin, Matthew Highmore, Zack Mitchell, Anthony Peluso
Gardien
#1 : John Muse, #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals220000001165110000007431100000042241.00011162700134133757931018122311815984328515360.00%40100.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
2Americans31200000711-4110000004222020000039-620.333712190013413375787101812231181591172314533133.33%7271.43%01386279649.57%1519316947.93%644134347.95%200214821904521950477
3Barracuda2020000059-41010000025-31010000034-100.000591400134133757681018122311815995241239000.00%5180.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
4Bears412000011817120100001912-32110000095430.375182947101341337571631018122311815919043181074250.00%9455.56%01386279649.57%1519316947.93%644134347.95%200214821904521950477
5Bruins2020000059-41010000057-21010000002-200.0005914001341337575710181223118159742075511100.00%10100.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
6Comets2200000018315110000009271100000091841.0001830480013413375716510181223118159591406511100.00%000.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
7Condors22000000194151100000010191100000093641.00019304900134133757140101812231181597929657000.00%30100.00%11386279649.57%1519316947.93%644134347.95%200214821904521950477
8Crunch30300000615-920200000410-61010000025-300.000612180013413375794101812231181591544312659111.11%6183.33%01386279649.57%1519316947.93%644134347.95%200214821904521950477
9Devils44000000368282200000019613220000001721581.0003665101011341337572831018122311815996221211333100.00%6183.33%01386279649.57%1519316947.93%644134347.95%200214821904521950477
10Eagles21100000330110000002021010000013-220.5003580113413375773101812231181596217444700.00%20100.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
11Griffins320000011055110000004132100000164250.833101828011341337571131018122311815910829108010220.00%40100.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
12Gulls20100100510-51010000026-41000010034-110.2505813001341337575710181223118159892644722100.00%10100.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
13Heat2200000015213110000006241100000090941.00015254001134133757137101812231181597822857000.00%4175.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
14IceHogs2010010047-31010000013-21000010034-110.2504711001341337575210181223118159101256377114.29%30100.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
15Marlies30100101914-51010000036-32000010168-220.3339172600134133757103101812231181591514627738337.50%60100.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
16Monsters30200001714-71010000012-120100001612-610.16771219001341337578610181223118159144501852600.00%8362.50%01386279649.57%1519316947.93%644134347.95%200214821904521950477
17Moose220000001358110000005321100000082641.0001324370013413375711310181223118159922010587342.86%50100.00%11386279649.57%1519316947.93%644134347.95%200214821904521950477
18Penguins440000002391422000000112922000000127581.000233659001341337572151018122311815913848191067114.29%7271.43%01386279649.57%1519316947.93%644134347.95%200214821904521950477
19Phantoms40300100719-1220100100410-62020000039-610.1257101700134133757154101812231181591825518848225.00%9188.89%01386279649.57%1519316947.93%644134347.95%200214821904521950477
20Rampage22000000844110000004311100000041341.00081523001341337577010181223118159771844110330.00%20100.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
21Reign20100010660100000104311010000023-120.500661200134133757661018122311815988171938600.00%7185.71%01386279649.57%1519316947.93%644134347.95%200214821904521950477
22Roadrunners2020000036-31010000012-11010000024-200.00035800134133757451018122311815976261430400.00%7271.43%01386279649.57%1519316947.93%644134347.95%200214821904521950477
23Rocket30200010612-62010001038-51010000034-120.3336915001341337579110181223118159131268627114.29%4175.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
24Senators330000002652122000000184141100000081761.0002647730013413375722310181223118159106261087400.00%40100.00%21386279649.57%1519316947.93%644134347.95%200214821904521950477
25Sound Tigers410020101385210010007432000101064281.00013213400134133757151101812231181591522413728112.50%3166.67%01386279649.57%1519316947.93%644134347.95%200214821904521950477
26Stars22000000205151100000011291100000093641.0002036560013413375713810181223118159762745511100.00%20100.00%11386279649.57%1519316947.93%644134347.95%200214821904521950477
27Thunderbirds33000000175122200000010371100000072561.00017294600134133757156101812231181591172014954125.00%50100.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
Total803729024353472539440221301121182126564015160131416512738930.58134759193824134133757344810181223118159325386933118961533925.49%1402582.14%51386279649.57%1519316947.93%644134347.95%200214821904521950477
29Wild2010000157-21010000023-11000000134-110.250581300134133757621018122311815977256426233.33%3233.33%01386279649.57%1519316947.93%644134347.95%200214821904521950477
30Wolf Pack422000001518-322000000108220200000510-540.500152944101341337571141018122311815918954228111327.27%11281.82%01386279649.57%1519316947.93%644134347.95%200214821904521950477
31Wolves21100000770110000004221010000035-220.5007121900134133757791018122311815971184504125.00%20100.00%01386279649.57%1519316947.93%644134347.95%200214821904521950477
_Since Last GM Reset803729024353472539440221301121182126564015160131416512738930.58134759193824134133757344810181223118159325386933118961533925.49%1402582.14%51386279649.57%1519316947.93%644134347.95%200214821904521950477
_Vs Conference4621170222220615353241370111111684322281001111906921540.5872063555612113413375720561018122311815918564641941118782126.92%781580.77%21386279649.57%1519316947.93%644134347.95%200214821904521950477
_Vs Division2711902111119932613730110161441714460101058499300.556119202321211341337571166101812231181591091296120615471225.53%531473.58%01386279649.57%1519316947.93%644134347.95%200214821904521950477

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
8093L134759193834483253869331189624
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8037292435347253
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4022131121182126
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4015161314165127
Derniers 10 Matchs
WLOTWOTL SOWSOL
630010
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1533925.49%1402582.14%5
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
10181223118159134133757
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1386279649.57%1519316947.93%644134347.95%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
200214821904521950477


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2019-10-038Rocket6Checkers0LSommaire du Match
4 - 2019-10-0523Checkers7Bears1WSommaire du Match
5 - 2019-10-0631Crunch5Checkers3LSommaire du Match
7 - 2019-10-0836Checkers7Thunderbirds2WSommaire du Match
10 - 2019-10-1160Sound Tigers1Checkers3WSommaire du Match
11 - 2019-10-1269Monsters2Checkers1LSommaire du Match
14 - 2019-10-1591Checkers2Reign3LSommaire du Match
15 - 2019-10-1697Checkers3Barracuda4LSommaire du Match
17 - 2019-10-18112Checkers3Gulls4LXSommaire du Match
23 - 2019-10-24148Checkers3Monsters8LSommaire du Match
25 - 2019-10-26161IceHogs3Checkers1LSommaire du Match
28 - 2019-10-29183Heat2Checkers6WSommaire du Match
31 - 2019-11-01199Griffins1Checkers4WSommaire du Match
32 - 2019-11-02211Devils4Checkers8WSommaire du Match
35 - 2019-11-05226Checkers1Phantoms6LSommaire du Match
37 - 2019-11-07241Wolf Pack4Checkers5WSommaire du Match
39 - 2019-11-09256Checkers8Senators1WSommaire du Match
41 - 2019-11-11271Senators1Checkers7WSommaire du Match
44 - 2019-11-14286Checkers0Americans4LSommaire du Match
46 - 2019-11-16299Checkers3Wild4LXXSommaire du Match
49 - 2019-11-19326Checkers3IceHogs4LXSommaire du Match
51 - 2019-11-21336Phantoms3Checkers2LXSommaire du Match
53 - 2019-11-23357Thunderbirds1Checkers6WSommaire du Match
54 - 2019-11-24363Checkers3Griffins4LXXSommaire du Match
57 - 2019-11-27381Checkers3Wolf Pack6LSommaire du Match
59 - 2019-11-29401Admirals4Checkers7WSommaire du Match
60 - 2019-11-30408Checkers2Crunch5LSommaire du Match
63 - 2019-12-03424Checkers0Bruins2LSommaire du Match
65 - 2019-12-05443Barracuda5Checkers2LSommaire du Match
67 - 2019-12-07459Wild3Checkers2LSommaire du Match
70 - 2019-12-10479Checkers9Condors3WSommaire du Match
72 - 2019-12-12496Checkers9Comets1WSommaire du Match
74 - 2019-12-14504Checkers9Heat0WSommaire du Match
77 - 2019-12-17530Checkers8Moose2WSommaire du Match
79 - 2019-12-19544Checkers1Eagles3LSommaire du Match
81 - 2019-12-21560Thunderbirds2Checkers4WSommaire du Match
83 - 2019-12-23569Checkers3Marlies4LXSommaire du Match
87 - 2019-12-27584Checkers2Wolf Pack4LSommaire du Match
88 - 2019-12-28598Bears6Checkers5LXXSommaire du Match
91 - 2019-12-31618Rocket2Checkers3WXXSommaire du Match
94 - 2020-01-03639Bears6Checkers4LSommaire du Match
96 - 2020-01-05655Crunch5Checkers1LSommaire du Match
98 - 2020-01-07668Phantoms7Checkers2LSommaire du Match
101 - 2020-01-10690Roadrunners2Checkers1LSommaire du Match
102 - 2020-01-11697Reign3Checkers4WXXSommaire du Match
104 - 2020-01-13712Checkers2Bears4LSommaire du Match
107 - 2020-01-16733Checkers3Monsters4LXXSommaire du Match
108 - 2020-01-17741Gulls6Checkers2LSommaire du Match
110 - 2020-01-19756Sound Tigers3Checkers4WXSommaire du Match
112 - 2020-01-21764Moose3Checkers5WSommaire du Match
122 - 2020-01-31788Wolves2Checkers4WSommaire du Match
124 - 2020-02-02808Comets2Checkers9WSommaire du Match
126 - 2020-02-04820Checkers4Rampage1WSommaire du Match
128 - 2020-02-06838Checkers2Roadrunners4LSommaire du Match
130 - 2020-02-08854Checkers3Wolves5LSommaire du Match
133 - 2020-02-11873Checkers9Stars3WSommaire du Match
136 - 2020-02-14894Devils2Checkers11WSommaire du Match
138 - 2020-02-16908Condors1Checkers10WSommaire du Match
140 - 2020-02-18925Checkers4Admirals2WSommaire du Match
143 - 2020-02-21942Wolf Pack4Checkers5WSommaire du Match
144 - 2020-02-22951Checkers3Marlies4LXXSommaire du Match
147 - 2020-02-25974Stars2Checkers11WSommaire du Match
150 - 2020-02-28996Eagles0Checkers2WSommaire du Match
151 - 2020-02-291004Checkers3Rocket4LSommaire du Match
156 - 2020-03-051037Checkers2Phantoms3LSommaire du Match
158 - 2020-03-071049Checkers4Sound Tigers3WXSommaire du Match
159 - 2020-03-081059Checkers6Penguins2WSommaire du Match
161 - 2020-03-101074Checkers3Griffins0WSommaire du Match
163 - 2020-03-121086Checkers11Devils0WSommaire du Match
165 - 2020-03-141104Penguins1Checkers6WSommaire du Match
166 - 2020-03-151113Checkers3Americans5LSommaire du Match
168 - 2020-03-171126Americans2Checkers4WSommaire du Match
170 - 2020-03-191140Rampage3Checkers4WSommaire du Match
172 - 2020-03-211158Senators3Checkers11WSommaire du Match
173 - 2020-03-221166Checkers2Sound Tigers1WXXSommaire du Match
175 - 2020-03-241180Checkers6Penguins5WSommaire du Match
177 - 2020-03-261195Marlies6Checkers3LSommaire du Match
179 - 2020-03-281205Penguins1Checkers5WSommaire du Match
180 - 2020-03-291219Checkers6Devils2WSommaire du Match
182 - 2020-03-311232Bruins7Checkers5LSommaire du Match
185 - 2020-04-031255Monsters-Checkers-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
186 - 2020-04-041260Checkers-Bruins-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
1 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
782,468$ 877,500$ 877,500$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 782,468$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 3 4,693$ 14,079$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
2823632062422582342441211303112134113214115190313012412137225843969706100886016269888892785851269674668612433616618.28%2313883.55%21334264250.49%1319288345.75%614127648.12%1840125720736371054507
3823732034152372231441151802213113120-7412214012021241032174237423660249179637257685784784555259177269813913175717.98%2764782.97%11480274353.96%1410278850.57%679129052.64%1952134719626051050524
4822340001126180191-1141141500093968313419250013384108-244618029947933614463192074686697666982774811119120385569016.19%4976986.12%7949261636.28%1160336734.45%412112936.49%1905126920896521016497
58296701311162419-257414340101182209-127415330030080210-130181622864480266583622010685661650194556127926215071673722.16%962475.00%1660193134.18%963323729.75%415133531.09%12638632765572909376
682274801222227327-10041152101220129147-184112270000298180-82542273936202276806852874945919992384762133929522561913920.42%1232480.49%4948263036.05%1375415633.08%457129535.29%150110282499585945418
782225006031268329-6141122303021154164-1041102703010114165-514426843670460998674123223100410851106454038117138322392094822.97%1664672.29%21118293938.04%1216361233.67%476137034.74%171912122266575970453
88037290243534725394402213011211821265640151601314165127389334759193824134133757344810181223118159325386933118961533925.49%1402582.14%51386279649.57%1519316947.93%644134347.95%200214821904521950477
Total Saison Régulière57219129801916262216791976-29728610313701161811890962-722868816108108117891014-22540116792867454615216275684396818903608363596298365246706987384612570195437619.24%152927382.15%2278751829743.04%89622321238.61%3697903840.91%12185846115560415168973255
Séries
21899000004750-3844000002122-11055000002628-21847791260118131605551881731877624170105239931617.20%471176.60%026657945.94%28668241.94%11226442.42%406278452143226108
31257000002835-751400000812-4743000002023-310285078011013413621031211092940811814825047612.77%671577.61%225040861.27%26445158.54%11519459.28%3212183089817086
Total Séries301416000007585-101358000002934-51798000004651-528751292040228262019172912942963610322882534891402215.71%1142677.19%251698752.28%550113348.54%22745849.56%727496760242397195