ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH
LHSRSM


Bruins
GP: 3 | W: 1 | L: 2
GF: 9 | GA: 9 | PP%: 16.67% | PK%: 81.82%
DG: Martin Picard | Morale : 50 | Moyenne d'Équipe : 61
Prochain matchs #26 vs Sound Tigers
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Kyle Clifford (C)X100.008375636483798661546263566177690506402811,600,000$
2John QuennevilleXXX100.00614586637683806173606264636764044630232750,000$
3Gabriel Dumont (A)XX100.00574685626976716068595961607868050620292700,000$
4Dominic ToninatoXX100.00634782617980785965586062597166050620251775,000$
5Nicholas ShoreX100.00684084587765825774535669587568050610271750,000$
6Francis PerronX100.00514588606883845861595756606764050600231715,000$
7Giovanni FioreXX100.00634387587578795651525754586764050590231701,667$
8Adam MascherinXX100.00504488576182845553585652576362050580212880,000$
9Oskar SteenX100.00515082586786885765565453586362050580213925,000$
10Jake LeschyshynX100.00514288555887885460515352556163050570203927,500$
11Maxime LajoieX100.00614289667783796330646165526563050640212780,000$
12Colton WhiteX100.00634387627481786130595758536563050610221935,833$
13Joey KeaneX100.00594885647289876330625556526164050610203925,000$
14Thomas SchemitschX100.00705186578688855630555458456764050600221715,000$
15Connor HobbsX100.00625280587784835630545357456563050590221798,333$
16Parker WotherspoonX100.00535679606987855930585456456563050590221855,000$
17Devante StephensX100.00634589568078775430535057486563050580221766,670$
Rayé
1Jeremy DaviesX100.005348836257878861305953524667640505902221,325,000$
MOYENNE D'ÉQUIPE100.0060488460738282584857565854676405060
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Casey DeSmith100.0079848271787779787779787783050680
2Calvin Petersen100.0076817974757476757476757175050660
Rayé
1Callum Booth100.0071565483706971706971706569050620
2Dylan Wells100.0061595778605961605961606367050570
MOYENNE D'ÉQUIPE100.007270687771707271707271697405063
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Francis PerronBruins (BOS)LW31344001790611.11%35819.6100018000050050.00%800001.3600000001
2Nicholas ShoreBruins (BOS)C31344205980512.50%35618.8900028000020048.75%8000001.4100000000
3Dominic ToninatoBruins (BOS)C/LW32134002573428.57%24515.14000000000000100.00%500001.3200000010
4Colton WhiteBruins (BOS)D32021404530566.67%56321.041011900007000.00%000000.6300000000
5Connor HobbsBruins (BOS)D3022000200030.00%2196.490110000000000.00%000002.0500000000
6Giovanni FioreBruins (BOS)LW/RW3022-2207692110.00%05016.95011180000000100.00%100000.7900000001
7Parker WotherspoonBruins (BOS)D32020603431066.67%53712.361011000000100.00%000001.0800000010
8Adam MascherinBruins (BOS)C/LW3101-2002692711.11%04615.5800000000000045.76%5900000.4300000000
9Gabriel DumontBruins (BOS)C/RW3011-10007124140.00%05418.26011311000020012.50%800000.3700000000
10Kyle CliffordBruins (BOS)LW3011-200171018180.00%17725.730114100000120053.13%3200000.2600000000
11Oskar SteenBruins (BOS)C3011-220376130.00%14314.4600000000000066.67%300000.4600000000
12Thomas SchemitschBruins (BOS)D30111401331030.00%46220.690000900006000.00%000000.3200000000
13Devante StephensBruins (BOS)D3000000300010.00%4186.320000000000000.00%000000.0000000000
14Jake LeschyshynBruins (BOS)C3000-100010140.00%1165.3300000000000050.00%200000.0000000000
15Joey KeaneBruins (BOS)D3000-1205310170.00%56421.5800071000009000.00%000000.0000000000
16John QuennevilleBruins (BOS)C/LW/RW3000-20011212350.00%15217.6400000000000057.83%8300000.0000000000
17Maxime LajoieBruins (BOS)D3000-140552040.00%86421.3600021000009000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne51915240260739010919908.26%4583216.3224622900000551051.60%28100000.5800000022
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Casey DeSmithBruins (BOS)31110.9382.901860191450000.000030100
Stats d'équipe Total ou en Moyenne31110.9382.901860191450000.000030100


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Adam MascherinBruins (BOS)C/LW211998-06-06No200 Lbs5 ft1NoNoNo2Pro & Farm880,000$0$0$No880,000$Lien / Lien NHL
Callum BoothBruins (BOS)G221997-05-21No184 Lbs6 ft4NoNoNo1Pro & Farm758,333$0$0$NoLien / Lien NHL
Calvin PetersenBruins (BOS)G241994-10-19No185 Lbs6 ft1NoNoNo3Pro & Farm858,333$0$0$No858,333$858,333$Lien
Casey DeSmithBruins (BOS)G281991-08-13No181 Lbs6 ft0NoNoNo3Pro & Farm1,250,000$0$0$No1,250,000$1,250,000$Lien / Lien NHL
Colton WhiteBruins (BOS)D221997-05-03No185 Lbs6 ft1NoNoNo1Pro & Farm935,833$0$0$NoLien / Lien NHL
Connor HobbsBruins (BOS)D221997-01-04No197 Lbs6 ft1NoNoNo1Pro & Farm798,333$0$0$NoLien / Lien NHL
Devante StephensBruins (BOS)D221997-01-02No185 Lbs6 ft3NoNoNo1Pro & Farm766,670$0$0$NoLien
Dominic ToninatoBruins (BOS)C/LW251994-03-09No191 Lbs6 ft2NoNoNo1Pro & Farm775,000$0$0$NoLien / Lien NHL
Dylan WellsBruins (BOS)G211998-01-03No190 Lbs6 ft2NoNoNo2Pro & Farm910,833$0$0$No910,833$Lien / Lien NHL
Francis PerronBruins (BOS)LW231996-04-18No166 Lbs6 ft0NoNoNo1Pro & Farm715,000$0$0$NoLien / Lien NHL
Gabriel DumontBruins (BOS)C/RW291990-10-06No191 Lbs5 ft10NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien / Lien NHL
Giovanni FioreBruins (BOS)LW/RW231996-08-13No188 Lbs6 ft1NoNoNo1Pro & Farm701,667$0$0$NoLien / Lien NHL
Jake LeschyshynBruins (BOS)C201999-03-10No185 Lbs5 ft1NoNoNo3Pro & Farm927,500$0$0$No927,500$927,500$Lien
Jeremy DaviesBruins (BOS)D221996-12-04No180 Lbs5 ft1NoNoNo2Pro & Farm1,325,000$0$0$No1,325,000$Lien
Joey KeaneBruins (BOS)D201999-07-02No187 Lbs6 ft0NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Lien
John QuennevilleBruins (BOS)C/LW/RW231996-04-16No195 Lbs6 ft1NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien / Lien NHL
Kyle CliffordBruins (BOS)LW281991-01-13No211 Lbs6 ft2NoNoNo1Pro & Farm1,600,000$0$0$NoLien / Lien NHL
Maxime LajoieBruins (BOS)D211997-11-05No196 Lbs6 ft1NoNoNo2Pro & Farm780,000$0$0$No780,000$Lien / Lien NHL
Nicholas ShoreBruins (BOS)C271992-09-26No198 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$No
Oskar SteenBruins (BOS)C211998-03-09No188 Lbs5 ft9NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Lien
Parker WotherspoonBruins (BOS)D221997-08-24No171 Lbs6 ft0NoNoNo1Pro & Farm855,000$0$0$NoLien / Lien NHL
Thomas SchemitschBruins (BOS)D221996-10-26No200 Lbs6 ft4NoNoNo1Pro & Farm715,000$0$0$NoLien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2223.09189 Lbs5 ft111.73891,023$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Kyle CliffordJohn QuennevilleGabriel Dumont30113
2Francis PerronNicholas ShoreDominic Toninato30113
3Oskar SteenAdam MascherinGiovanni Fiore25122
4Kyle CliffordJohn QuennevilleJake Leschyshyn15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Maxime LajoieJoey Keane30122
2Colton WhiteThomas Schemitsch30131
3Parker Wotherspoon25131
4Connor HobbsDevante Stephens15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Kyle CliffordGabriel Dumont60014
2Francis PerronNicholas ShoreGiovanni Fiore40014
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Maxime LajoieJoey Keane60122
2Colton WhiteThomas Schemitsch40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Kyle Clifford60131
2Gabriel DumontNicholas Shore40131
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Maxime LajoieJoey Keane60131
2Colton WhiteThomas Schemitsch40131
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Kyle Clifford60050Maxime LajoieJoey Keane60041
240050Colton WhiteThomas Schemitsch40050
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Kyle Clifford60122
2Gabriel DumontNicholas Shore40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Maxime LajoieJoey Keane60122
2Colton WhiteThomas Schemitsch40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Kyle CliffordGabriel DumontMaxime LajoieJoey Keane
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Kyle CliffordGabriel DumontMaxime LajoieJoey Keane
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Adam Mascherin, Jake Leschyshyn, Francis PerronAdam Mascherin, Jake LeschyshynFrancis Perron
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Parker Wotherspoon, , Connor HobbsParker Wotherspoon, Connor Hobbs
Tirs de Pénalité
Kyle Clifford, , Gabriel Dumont, Nicholas Shore, Francis Perron
Gardien
#1 : Casey DeSmith, #2 : Calvin Petersen


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Sound Tigers31200000990110000003032020000069-320.33391524015220109413332314546267412216.67%11281.82%05811948.74%6813849.28%244158.54%654381223819
Total31200000990110000003032020000069-320.33391524015220109413332314546267412216.67%11281.82%05811948.74%6813849.28%244158.54%654381223819
_Since Last GM Reset31200000990110000003032020000069-320.33391524015220109413332314546267412216.67%11281.82%05811948.74%6813849.28%244158.54%654381223819
_Vs Conference31200000990110000003032020000069-320.33391524015220109413332314546267412216.67%11281.82%05811948.74%6813849.28%244158.54%654381223819
_Vs Division31200000990110000003032020000069-320.33391524015220109413332314546267412216.67%11281.82%05811948.74%6813849.28%244158.54%654381223819

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
32W19152410914546267401
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
312000099
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
110000030
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
202000069
Derniers 10 Matchs
WLOTWOTL SOWSOL
110100
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
12216.67%11281.82%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
41333235220
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
5811948.74%6813849.28%244158.54%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
654381223819


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2021-04-062Bruins2Sound Tigers4LSommaire du Match
3 - 2021-04-0810Bruins4Sound Tigers5LXSommaire du Match
5 - 2021-04-1018Sound Tigers0Bruins3WSommaire du Match
7 - 2021-04-1226Sound Tigers-Bruins-
9 - 2021-04-1434Bruins-Sound Tigers-
11 - 2021-04-1642Sound Tigers-Bruins-
13 - 2021-04-1850Bruins-Sound Tigers-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacitéPopularité de l'Équipe
40 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
0$ 1,960,249$ 821,999$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 0$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 8 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
282303601564273291-1841141701342141144-341161900222132147-1560273462735011207868112699930866887462684774102315433557220.28%3797879.42%31411272151.86%1287265048.57%697138750.25%1931132020006141052517
38253160324430817912941287020221468363412590122216296661063085448520513791739333911131110108756208565082015113575916.53%3374786.05%51902312160.94%1587253662.58%752129158.25%2189155117275881051550
48253180105527916311641314010411567185412214000141239231106279511790071098282927989418879594922536861390191657512020.87%5928685.47%21837307059.84%1649287257.42%737122460.21%2181150617596151030541
5825123021232821821004129701013161808141221601110121102191022825137950911684786296897799198535222159765620492045125.00%2924883.56%31807292561.78%1466257556.93%778124362.59%2260164316755411019538
6826016012033752121634132700101183101824128901102192111811203756901065261591081072367312291149128024232867465320682174621.20%2835381.27%52100322965.04%1566264259.27%828134961.38%2369175815695241002543
782442007272348211137412390314119293994121110413115611838883486359831712510910018363911761198122174243271257420482195826.48%2574383.27%22096339761.70%1568268958.31%827133062.18%2349173416185311010545
88250160121033771901874123901062189939641277002411889791100377674105111114711610318343011161082120284248269754020391754224.00%2393585.36%21796301759.53%1465269654.34%786134858.31%240017921608503985532
88250160121033771901874123901062189939641277002411889791100377674105111114711610318343011161082120284248269754020391754224.00%2393585.36%21796301759.53%1465269654.34%786134858.31%240017921608503985532
98235300436428326122411912032321521242841161801132131137-69728352080306103898114308910161036974102289385861420081753721.14%2414979.67%51752301158.19%1618296754.53%762137455.46%2112150718355591043540
Total Saison Régulière73842619102119503129021879102336922281013730161509882627369204110081220151393997396879290252238125563116387379510529065961494019797554218606345681017221245252721.49%285947483.42%29164972750859.97%136712432356.21%69531189458.46%201951460615404498291814842
Séries
37340000022220413000001316-3321000009636224163009571214766363122226269116541018.52%27581.48%013226450.00%14124158.51%5711549.57%180124159569548
421165000005140111183000002622410820000025187325196147032116122660201217211316401714165151492516.78%1642584.76%146081956.17%40780350.68%16829157.73%549371485167272141
51810800000565609630000031274945000002529-420569815400171820151816815217523587188210477501020.00%961980.21%127456548.50%31266846.71%14629150.17%426287470139242117
6201460000080473310910000043212210550000037261128801382182325282617872832422611637180152489701622.86%691184.06%346080457.21%40474354.37%18632856.71%509362440143252129
773400000241410422000001541131200000910-162443670198703311079410822211786118424729.17%25196.00%019734057.94%13422260.36%5910755.14%219164147479049
813760000039381734000001921-264200000201731439711100171615146613815516674301309430835411.43%441370.45%021247544.63%22748746.61%8919046.84%3302332929016586
931200000990110000003032020000069-3291524015220109413332314546267412216.67%11281.82%05811948.74%6813849.28%244158.54%654381223819
Total Séries895435000002812265546301600000150111394324190000013111516108281502783299393896308510149561016992872855102821633947418.78%4367682.57%51793338652.95%1693330251.27%729136353.48%2282158720766671157593