ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH

Thunderbirds

GP: 47 | W: 22 | L: 20 | OTL: 5 | P: 49
GF: 177 | GA: 162 | PP%: 24.58% | PK%: 73.27%
DG: Jonathan Auger | Morale : 50 | Moyenne d'Équipe : 61
Prochain matchs #751 vs Monsters
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Filip ZadinaXX100.005938896972847768566567647061630406501931,744,167$
2Max JonesX100.00744677638179756253606164626365050630212863,333$
3Kevin PorterX100.00584886607289845971615658608479050620331650,000$
4Morgan FrostX100.00554189676678706474636158696163050620203863,333$
5Liam O'BrienX100.00676574598088915854575660597166050610251700,000$
6Pascal LabergeX100.00564384637277735961526058596362050600212863,333$
7Dakota JoshuaX100.00614782567774715569535456516764050580232925,000$
8Deven SideroffX100.00533987586777765652555357546563050580221935,833$
9Nick HenryX100.00524287565979785451535352546162050570203826,666$
10Caleb JonesX100.00614289667684776430655859566564050630221815,000$
11Christian JarosX100.00774688638877756130625660536764050630231801,667$
12Derrick PouliotX100.00654285667484786430655759537166050630251700,000$
13Lucas CarlssonX100.00594389637282796230605865526567050620222925,000$
14Moritz Seider (R)X100.007349866187848362306053614759610506201831,775,000$
15TJ BrennanX100.00685578628182775930605461457969050620301675,000$
16Christian DjoosX100.005840886270797461306356575371660506102511,250,000$
17Kyle CumiskeyX100.00533987606877766130595457458474050610321650,000$
Rayé
MOYENNE D'ÉQUIPE100.0062458562748177614660575955686604961
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Dustin Tokarski100.0072757374717072717072717985050640
2Michael Dipietro100.0076686674757476757476756165050640
Rayé
1Zachary Fucale100.0060535178595860595860596973050570
MOYENNE D'ÉQUIPE100.006965637568676968676968707405062
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Max JonesThunderbirds (FLO)LW47302555-24202051192665218911.28%23108223.04571230820001764250.73%34100011.0203000813
2Morgan FrostThunderbirds (FLO)C4216284470029128212611477.55%686320.5613419720001300154.93%99400011.0213000210
3Kevin PorterThunderbirds (FLO)C471627437261047148176511389.09%17104022.14461032980003622060.16%114700000.8303020124
4Derrick PouliotThunderbirds (FLO)D4293241260505611024628.18%6686420.583121554102000080100.00%000000.9500000044
5Caleb JonesThunderbirds (FLO)D471226387120557883265014.46%6288718.883472970000061200.00%000000.8611000041
6Christian JarosThunderbirds (FLO)D47433379300129548329654.82%4887918.7038113080000058210.00%000000.8400000111
7Deven SideroffThunderbirds (FLO)RW4712223411404251120429410.00%1294520.1116717980000132160.32%6300010.7200000202
8Pascal LabergeThunderbirds (FLO)C471715321040381081634411310.43%574015.75000130000112151.33%90000020.8623000312
9Liam O'BrienThunderbirds (FLO)LW42191231912011258131399214.50%1074117.6522423440000344158.14%4300010.8413000143
10Lucas CarlssonThunderbirds (FLO)D475182356034425217369.62%3659412.6500001000040033.33%300000.7700000001
11Moritz SeiderThunderbirds (FLO)D42715224280102517218389.72%3669116.4700000000090127.78%1800000.6400000110
12TJ BrennanThunderbirds (FLO)D47319221318098405423305.56%5275115.991232132000042000.00%000000.5900000101
13Nick HenryThunderbirds (FLO)RW42810181080193774203910.81%581219.3410121730000180035.80%8100000.4400000001
14Kyle CumiskeyThunderbirds (FLO)D472151724039406612353.03%3060512.8900000000021037.50%1600000.5600000001
15Dakota JoshuaThunderbirds (FLO)C2035821152918337239.09%337318.6900000000000058.23%15800000.4300001000
16Christian DjoosThunderbirds (FLO)D42066320181513170.00%91663.970000100000000.00%100000.7200000000
17Adam LarssonPanthersD9235-2120336274167.41%919121.292131924000021010.00%000000.5200000000
18Filip ZadinaThunderbirds (FLO)LW/RW44155004162952513.79%29423.5910146000070054.17%2400001.0600000100
Stats d'équipe Total ou en Moyenne7081693124811022251510831065176447511999.58%4311232717.41275178300791000553520954.90%378900060.78516021211924
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Dustin TokarskiThunderbirds (FLO)47221950.9023.4526630215315590000.75016475220
2Michael DipietroThunderbirds (FLO)50100.9372.671800081280000.0000042000
Stats d'équipe Total ou en Moyenne52222050.9053.4028430216116870000.750164747220


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Caleb JonesThunderbirds (FLO)D221997-06-06No194 Lbs6 ft1NoNoNo1Pro & Farm815,000$0$0$NoLien / Lien NHL
Christian DjoosThunderbirds (FLO)D251994-08-06No180 Lbs6 ft0NoNoNo1Pro & Farm1,250,000$0$0$NoLien / Lien NHL
Christian JarosThunderbirds (FLO)D231996-04-02No222 Lbs6 ft3NoNoNo1Pro & Farm801,667$0$0$NoLien / Lien NHL
Dakota JoshuaThunderbirds (FLO)C231996-05-15No182 Lbs6 ft2NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien
Derrick PouliotThunderbirds (FLO)D251994-01-16No196 Lbs6 ft0NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Deven SideroffThunderbirds (FLO)RW221997-04-14No171 Lbs5 ft11NoNoNo1Pro & Farm935,833$0$0$NoLien / Lien NHL
Dustin TokarskiThunderbirds (FLO)G301989-09-16No198 Lbs6 ft0NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Filip ZadinaThunderbirds (FLO)LW/RW191999-11-27No189 Lbs6 ft0NoNoNo3Pro & Farm1,744,167$0$0$No1,744,167$1,744,167$Lien / Lien NHL
Kevin PorterThunderbirds (FLO)C331986-03-12No190 Lbs6 ft0NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Kyle CumiskeyThunderbirds (FLO)D321986-12-02No180 Lbs5 ft11NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Liam O'BrienThunderbirds (FLO)LW251994-07-29No213 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Lucas CarlssonThunderbirds (FLO)D221997-07-05No189 Lbs6 ft0NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien / Lien NHL
Max JonesThunderbirds (FLO)LW211998-02-17No220 Lbs6 ft1NoNoNo2Pro & Farm863,333$0$0$No863,333$Lien / Lien NHL
Michael DipietroThunderbirds (FLO)G201999-06-09No200 Lbs6 ft0NoNoNo3Pro & Farm910,833$0$0$No910,833$910,833$Lien / Lien NHL
Morgan FrostThunderbirds (FLO)C201999-05-14No170 Lbs5 ft11NoNoNo3Pro & Farm863,333$0$0$No863,333$863,333$Lien
Moritz SeiderThunderbirds (FLO)D182001-04-06Yes203 Lbs6 ft4NoNoNo3Pro & Farm1,775,000$0$0$No1,775,000$1,775,000$
Nick HenryThunderbirds (FLO)RW201999-07-04No190 Lbs5 ft1NoNoNo3Pro & Farm826,666$0$0$No826,666$826,666$Lien
Pascal LabergeThunderbirds (FLO)C211998-04-09No172 Lbs6 ft1NoNoNo2Pro & Farm863,333$0$0$No863,333$Lien / Lien NHL
TJ BrennanThunderbirds (FLO)D301989-04-03No216 Lbs6 ft1NoNoNo1Pro & Farm675,000$0$0$NoLien / Lien NHL
Zachary FucaleThunderbirds (FLO)G241995-05-28No187 Lbs6 ft2NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2023.75193 Lbs6 ft01.70908,708$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Kevin PorterDeven Sideroff30122
2Max JonesMorgan FrostNick Henry30122
3Liam O'BrienPascal LabergeDakota Joshua25122
4Dakota JoshuaMax Jones15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Derrick PouliotChristian Jaros30122
2Caleb JonesTJ Brennan30122
3Lucas CarlssonMoritz Seider25122
4Kyle CumiskeyChristian Djoos15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Kevin PorterDeven Sideroff60122
2Max JonesMorgan FrostNick Henry40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Derrick PouliotChristian Jaros60122
2Caleb JonesTJ Brennan40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Max Jones60122
2Kevin PorterMorgan Frost40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Derrick PouliotChristian Jaros60122
2Caleb JonesTJ Brennan40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
160122Derrick PouliotChristian Jaros60122
2Max Jones40122Caleb JonesTJ Brennan40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Max Jones60122
2Kevin PorterMorgan Frost40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Derrick PouliotChristian Jaros60122
2Caleb JonesTJ Brennan40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Kevin PorterDeven SideroffDerrick PouliotChristian Jaros
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Kevin PorterDeven SideroffDerrick PouliotChristian Jaros
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Liam O'Brien, Pascal Laberge, Deven SideroffLiam O'Brien, Pascal LabergeDeven Sideroff
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Lucas Carlsson, Moritz Seider, Kyle CumiskeyLucas CarlssonMoritz Seider, Kyle Cumiskey
Tirs de Pénalité
, Max Jones, Kevin Porter, Morgan Frost, Liam O'Brien
Gardien
#1 : Dustin Tokarski, #2 : Michael Dipietro


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2010001047-3000000000002010001047-320.50046100067594776963657561728772216597228.57%7185.71%0933172354.15%825163950.34%42980753.16%12108751045314590306
2Americans11000000624110000006240000000000021.000612180067594774563657561728251043322100.00%10100.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
3Barracuda21001000972100010006511100000032141.000917260067594778563657561728811721575120.00%8362.50%0933172354.15%825163950.34%42980753.16%12108751045314590306
4Bears1010000026-41010000026-40000000000000.000235006759477296365756172864161029200.00%5180.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
5Bruins2010010046-21010000012-11000010034-110.25047110067594775963657561728652012575120.00%5180.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
6Checkers210000018711000000134-11100000053230.750816240067594777763657561728732216445240.00%8275.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
7Comets3300000024519110000001019220000001441061.0002444680067594772316365756172886200867228.57%000.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
8Condors220000001941500000000000220000001941541.00019385700675947713663657561728461484822100.00%4175.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
9Crunch21100000880211000008800000000000020.50081523006759477816365756172864186348337.50%30100.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
10Devils1010000035-2000000000001010000035-200.00035800675947746636575617284710622200.00%2150.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
11Griffins20001010642100000103211000100032141.00067130067594776163657561728521411553133.33%3166.67%0933172354.15%825163950.34%42980753.16%12108751045314590306
12Gulls20200000513-81010000017-61010000046-200.000571200675947764636575617288728860000.00%40100.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
13IceHogs1010000026-41010000026-40000000000000.00023500675947727636575617284611017100.00%000.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
14Monsters21100000541000000000002110000054120.50051015006759477636365756172863194338112.50%20100.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
15Moose11000000541110000005410000000000021.000510150067594772763657561728308420300.00%2150.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
16Penguins220000001441000000000000220000001441041.00014243801675947796636575617288125444300.00%20100.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
17Phantoms2020000069-31010000024-21010000045-100.000611170067594777563657561728762384510110.00%4175.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
18Rampage1010000014-31010000014-30000000000000.0001230067594773363657561728369624200.00%3166.67%0933172354.15%825163950.34%42980753.16%12108751045314590306
19Reign2110000045-1110000003211010000013-220.50048120067594775263657561728561414434250.00%7185.71%0933172354.15%825163950.34%42980753.16%12108751045314590306
20Rocket413000001016-62110000086220200000210-820.250101929006759477121636575617281614688911218.18%4175.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
21Senators2020000039-61010000014-31010000025-300.000358006759477686365756172885262252400.00%9366.67%0933172354.15%825163950.34%42980753.16%12108751045314590306
22Sound Tigers311001001112-12010010079-21100000043130.50011203100675947710563657561728111362183500.00%7357.14%0933172354.15%825163950.34%42980753.16%12108751045314590306
23Stars1010000045-1000000000001010000045-100.0004812006759477336365756172840144354250.00%2150.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
Total471820024211771621524810013118386-323101001110947618490.521177323500026759477184063657561728168747423111481182924.58%1012773.27%0933172354.15%825163950.34%42980753.16%12108751045314590306
24Wild22000000826220000008260000000000041.0008162401675947773636575617286398477228.57%4175.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
25Wolf Pack2000020068-22000020068-20000000000020.500610160067594778463657561728722310328337.50%5340.00%0933172354.15%825163950.34%42980753.16%12108751045314590306
_Since Last GM Reset471820024211771621524810013118386-323101001110947618490.521177323500026759477184063657561728168747423111481182924.58%1012773.27%0933172354.15%825163950.34%42980753.16%12108751045314590306
_Vs Conference271012004011059781547003015454012650010051438250.4631051912960167594771117636575617281010295127650721622.22%551670.91%0933172354.15%825163950.34%42980753.16%12108751045314590306
_Vs Division15450040155550704003012031-1184100100352411130.4335599154016759477575636575617285871747933243716.28%351168.57%0933172354.15%825163950.34%42980753.16%12108751045314590306

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
4749L217732350018401687474231114802
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
4718202421177162
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
2481013118386
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
23101011109476
Derniers 10 Matchs
WLOTWOTL SOWSOL
351100
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1182924.58%1012773.27%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
636575617286759477
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
933172354.15%825163950.34%42980753.16%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
12108751045314590306


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2020-10-0611Rocket5Thunderbirds3LSommaire du Match
4 - 2020-10-0824Thunderbirds8Comets3WSommaire du Match
6 - 2020-10-1042Bears6Thunderbirds2LSommaire du Match
9 - 2020-10-1359Thunderbirds0Rocket4LSommaire du Match
11 - 2020-10-1575Thunderbirds1Admirals5LSommaire du Match
13 - 2020-10-1790Griffins2Thunderbirds3WXXSommaire du Match
15 - 2020-10-19107Wolf Pack5Thunderbirds4LXSommaire du Match
18 - 2020-10-22127Thunderbirds3Devils5LSommaire du Match
20 - 2020-10-24139Senators4Thunderbirds1LSommaire du Match
22 - 2020-10-26154Thunderbirds8Penguins4WSommaire du Match
24 - 2020-10-28168Checkers4Thunderbirds3LXXSommaire du Match
26 - 2020-10-30186Thunderbirds8Condors3WSommaire du Match
28 - 2020-11-01199Wild2Thunderbirds4WSommaire du Match
31 - 2020-11-04218Thunderbirds3Admirals2WXXSommaire du Match
32 - 2020-11-05231Sound Tigers3Thunderbirds2LSommaire du Match
35 - 2020-11-08250Phantoms4Thunderbirds2LSommaire du Match
38 - 2020-11-11273Thunderbirds5Checkers3WSommaire du Match
40 - 2020-11-13282Thunderbirds2Rocket6LSommaire du Match
41 - 2020-11-14294Gulls7Thunderbirds1LSommaire du Match
44 - 2020-11-17315Crunch2Thunderbirds7WSommaire du Match
47 - 2020-11-20337Thunderbirds3Barracuda2WSommaire du Match
48 - 2020-11-21347Americans2Thunderbirds6WSommaire du Match
50 - 2020-11-23368Thunderbirds11Condors1WSommaire du Match
52 - 2020-11-25377Rampage4Thunderbirds1LSommaire du Match
55 - 2020-11-28399Thunderbirds6Comets1WSommaire du Match
56 - 2020-11-29409Crunch6Thunderbirds1LSommaire du Match
59 - 2020-12-02433Reign2Thunderbirds3WSommaire du Match
60 - 2020-12-03446Thunderbirds4Sound Tigers3WSommaire du Match
64 - 2020-12-07467Comets1Thunderbirds10WSommaire du Match
66 - 2020-12-09479Thunderbirds4Stars5LSommaire du Match
68 - 2020-12-11495Thunderbirds2Monsters3LSommaire du Match
70 - 2020-12-13504Wild0Thunderbirds4WSommaire du Match
72 - 2020-12-15523Thunderbirds3Griffins2WXSommaire du Match
74 - 2020-12-17536Wolf Pack3Thunderbirds2LXSommaire du Match
77 - 2020-12-20560Sound Tigers6Thunderbirds5LXSommaire du Match
79 - 2020-12-22577Thunderbirds2Senators5LSommaire du Match
81 - 2020-12-24588Thunderbirds6Penguins0WSommaire du Match
82 - 2020-12-25598Barracuda5Thunderbirds6WXSommaire du Match
85 - 2020-12-28616Thunderbirds3Monsters1WSommaire du Match
87 - 2020-12-30629Rocket1Thunderbirds5WSommaire du Match
90 - 2021-01-02654IceHogs6Thunderbirds2LSommaire du Match
92 - 2021-01-04669Thunderbirds4Gulls6LSommaire du Match
94 - 2021-01-06685Moose4Thunderbirds5WSommaire du Match
96 - 2021-01-08698Thunderbirds1Reign3LSommaire du Match
98 - 2021-01-10712Thunderbirds3Bruins4LXSommaire du Match
100 - 2021-01-12722Thunderbirds4Phantoms5LSommaire du Match
101 - 2021-01-13730Bruins2Thunderbirds1LSommaire du Match
103 - 2021-01-15751Monsters-Thunderbirds-
106 - 2021-01-18773Thunderbirds-Bruins-
108 - 2021-01-20783Thunderbirds-Devils-
109 - 2021-01-21789Checkers-Thunderbirds-
112 - 2021-01-24810Thunderbirds-Heat-
114 - 2021-01-26821Griffins-Thunderbirds-
117 - 2021-01-29842Marlies-Thunderbirds-
119 - 2021-01-31859Thunderbirds-Americans-
121 - 2021-02-02873Thunderbirds-Eagles-
122 - 2021-02-03881Penguins-Thunderbirds-
126 - 2021-02-07906Heat-Thunderbirds-
128 - 2021-02-09920Thunderbirds-IceHogs-
129 - 2021-02-10930Thunderbirds-Admirals-
131 - 2021-02-12941Thunderbirds-Rampage-
133 - 2021-02-14950Phantoms-Thunderbirds-
136 - 2021-02-17972Senators-Thunderbirds-
139 - 2021-02-20999Devils-Thunderbirds-
141 - 2021-02-221015Thunderbirds-Moose-
142 - 2021-02-231024Thunderbirds-Wolves-
144 - 2021-02-251037Wolves-Thunderbirds-
147 - 2021-02-281059Stars-Thunderbirds-
149 - 2021-03-021071Thunderbirds-Americans-
151 - 2021-03-041085Thunderbirds-Wild-
153 - 2021-03-061098Wolves-Thunderbirds-
156 - 2021-03-091121Roadrunners-Thunderbirds-
158 - 2021-03-111141Thunderbirds-Wolf Pack-
160 - 2021-03-131153Thunderbirds-Bears-
161 - 2021-03-141161Condors-Thunderbirds-
165 - 2021-03-181184Eagles-Thunderbirds-
166 - 2021-03-191191Thunderbirds-Marlies-
169 - 2021-03-221211Admirals-Thunderbirds-
171 - 2021-03-241218Thunderbirds-Marlies-
174 - 2021-03-271236Thunderbirds-Roadrunners-
177 - 2021-03-301251Thunderbirds-Crunch-
180 - 2021-04-021268Bears-Thunderbirds-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
17 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,043,518$ 1,817,416$ 853,416$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 1,043,518$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 80 9,986$ 798,880$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
2823824043672612144741191003135133103304119140123212811117762614587192493847420259182686886180232766486016173756818.13%3515983.19%61497278353.79%1371263652.01%694130953.02%2038138818766231090556
38240300215423020327411717011321131121412313010221179126802303966263996636410253188680780664244968593316603386619.53%3796582.85%21317273648.14%1279282945.21%606120150.46%2059142018596051055536
482294101272193202-9411521001311009914114200114193103-105819332651937676157122173699693760632716774152819075109618.82%5929084.80%61295262749.30%1487311547.74%535115246.44%1933128919976481043518
5823636002352222061641191900012117991841171700223105107-272222387609288879524251886583880041263277752919592143918.22%2254978.22%01288256250.27%1174279142.06%580122147.50%2014143619405631007506
68257300130195587-3924123700020111303-192413360011084284-200101953285230074615752686897877891285233142528822011803418.89%1374467.88%0760250630.33%849313727.06%394149926.28%146410122539566935404
782284502043266420-15441142101032137194-5741142401011129226-97562664817470310492648302610251006957664604134232220471873619.25%1543875.32%21386272250.92%1347326041.32%642145444.15%163111522372560953433
882284800024293415-12241142500011154221-6741142300013139194-555629349678922123907863333111411211085333894108730817871543321.43%1343573.88%31466278352.68%1372281448.76%748144951.62%192014142076528952465
882284800024293415-12241142500011154221-6741142300013139194-555629349678922123907863333111411211085333894108730817871543321.43%1343573.88%31466278352.68%1372281448.76%748144951.62%192014142076528952465
9471820024211771621524810013118386-32310100111094761849177323500026759477184063657561728168747423111481182924.58%1012773.27%0933172354.15%825163950.34%42980753.16%12108751045314590306
Total Saison Régulière70325036501113343021302824-694352122185066181511021438-336351128180057161510281386-35851321303691582114378356795717824031806279067862436294368315530716113223043419.46%220744279.97%22114082322549.12%110762503544.24%53761154146.58%161931140317784493885804192
Séries
2211380000066501611650000030273107300000362313266612118712282314166221521420924661200193368781721.79%751284.00%141275054.93%32968747.89%15831949.53%535366480153276145
3624000001014-43030000049-53210000065141018281114411685447589170555310127622.22%24387.50%08819844.44%8621340.38%348340.96%13790153507937
Total Séries271512000007664121468000003436-21394000004228143076139215232927182830269261267338312552464691052321.90%991584.85%150094852.74%41590046.11%19240247.76%672457634203355183