ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH

Phantoms

GP: 50 | W: 35 | L: 8 | OTL: 7 | P: 77
GF: 266 | GA: 151 | PP%: 21.88% | PK%: 78.29%
DG: Francois Gamache | Morale : 50 | Moyenne d'Équipe : 63
Prochain matchs #801 vs Bruins
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Riley Nash (C)XX100.007243896177698662806359736279720506503022,750,000$
2Martin FrkX100.00634585687881756758656664697368050650261700,000$
3Christoffer EhnXX100.00764184638273856274606168626764050640231925,000$
4Christian FischerX100.008645846283778261535663586265640506302211,075,833$
5Matt ReadX100.00574389626878736156596063598474010630331650,000$
6Keegan KolesarX100.00674988618677736057595862586563050620221905,000$
7Mikhail VorobyevX100.00624687617978776271605963626563050620221925,000$
8J.C. BeaudinXX100.00624388607779765869575961586563050610221816,667$
9Dan HamhuisX100.006844786378808261306850744688780356403611,250,000$
10Michael PaliottaX100.00724982568879785430535057457367039590261650,000$
Rayé
MOYENNE D'ÉQUIPE100.0069458562807779615860596458726804363
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Hunter Miska100.0077646272767577767577766973050650
2Jon Gillies100.0070878597696870696870697175050640
Rayé
MOYENNE D'ÉQUIPE100.007476748573727473727473707405065
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Riley NashPhantoms (PHI)C/RW4923739658200114181259861888.88%51114323.33611173210600011123164.67%150000011.6817000554
2Martin FrkPhantoms (PHI)RW4939549360100751393058622812.79%33115723.6249132811000081227555.19%46200021.6137000646
3Christoffer EhnPhantoms (PHI)C/LW49392968432601221623058223312.79%37100220.4530325970006584161.39%106200031.3614000541
4Joel FarabeeFlyersLW432936654116036902607019611.15%1684419.65661234970003582258.73%12600321.5414000242
5J.C. BeaudinPhantoms (PHI)C/LW50164763391204282253771846.32%1592718.561452583000230063.16%9500011.3601000120
6Mikhail VorobyevPhantoms (PHI)C50253661248036158280652168.93%3481916.400117230000131260.58%106800011.4912000123
7Keegan KolesarPhantoms (PHI)RW502336592922106796298811867.72%3890618.1301168000013050.59%8500021.3001002223
8Christian FischerPhantoms (PHI)RW492329521226014887259671908.88%3086017.5504413450000174057.14%9100001.2112000423
9Dan HamhuisPhantoms (PHI)D38123446224801276670245217.14%7489523.57369317900007610100.00%100001.0300000043
10Matt ReadPhantoms (PHI)RW32202141272018641725113411.63%2165020.3401127601011383153.49%8600011.2602000213
11Michael PaliottaPhantoms (PHI)D4992938374201582973304812.33%6496019.614371994011073310.00%000000.7900000202
Stats d'équipe Total ou en Moyenne5082584246823922321094311542534719185510.18%4131016920.0227467324780711221575311361.19%4576003131.34830002303030
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Hunter MiskaPhantoms (PHI)5034870.9192.9028764313917230000.58131500652
2Jon GilliesPhantoms (PHI)51000.9432.251600061050000.0000050000
Stats d'équipe Total ou en Moyenne5535870.9212.8730364314518280000.581315050652


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Christian FischerPhantoms (PHI)RW221997-04-15No214 Lbs6 ft2NoNoNo1Pro & Farm1,075,833$0$0$NoLien / Lien NHL
Christoffer EhnPhantoms (PHI)C/LW231996-04-05No195 Lbs6 ft3NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Dan HamhuisPhantoms (PHI)D361982-12-13No204 Lbs6 ft1NoNoNo1Pro & Farm1,250,000$0$0$NoLien / Lien NHL
Hunter MiskaPhantoms (PHI)G241995-07-07No175 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
J.C. BeaudinPhantoms (PHI)C/LW221997-03-25No196 Lbs6 ft1NoNoNo1Pro & Farm816,667$0$0$NoLien / Lien NHL
Jon GilliesPhantoms (PHI)G251994-01-22No223 Lbs6 ft6NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
Keegan KolesarPhantoms (PHI)RW221997-04-08No227 Lbs6 ft2NoNoNo1Pro & Farm905,000$0$0$NoLien / Lien NHL
Martin FrkPhantoms (PHI)RW261993-10-05No205 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Matt ReadPhantoms (PHI)RW331986-06-14No188 Lbs5 ft10NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Michael PaliottaPhantoms (PHI)D261993-04-06No207 Lbs6 ft4NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Mikhail VorobyevPhantoms (PHI)C221997-01-05No194 Lbs6 ft2NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Riley NashPhantoms (PHI)C/RW301989-05-09No185 Lbs6 ft2NoNoNo2Pro & Farm2,750,000$0$0$No2,750,000$Lien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1225.92201 Lbs6 ft21.081,008,125$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Riley NashMartin Frk30122
2J.C. BeaudinChristoffer EhnMatt Read30122
3Keegan KolesarMikhail VorobyevChristian Fischer25122
4Riley NashMartin FrkKeegan Kolesar15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dan Hamhuis30122
2Michael Paliotta30122
325122
4Dan Hamhuis15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Riley NashMartin Frk60122
2J.C. BeaudinChristoffer EhnMatt Read40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dan Hamhuis60122
2Michael Paliotta40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Martin FrkRiley Nash60122
2Christoffer Ehn40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dan Hamhuis60122
2Michael Paliotta40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Martin Frk60122Dan Hamhuis60122
2Riley Nash40122Michael Paliotta40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Martin FrkRiley Nash60122
2Christoffer Ehn40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dan Hamhuis60122
2Michael Paliotta40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Riley NashMartin FrkDan Hamhuis
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Riley NashMartin FrkDan Hamhuis
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Christian Fischer, Mikhail Vorobyev, Matt ReadChristian Fischer, Mikhail VorobyevMatt Read
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Michael Paliotta, , Dan HamhuisMichael Paliotta, Dan Hamhuis
Tirs de Pénalité
Martin Frk, Riley Nash, , Christoffer Ehn, Matt Read
Gardien
#1 : Hunter Miska, #2 : Jon Gillies


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals11000000743110000007430000000000021.000713200011984619489038788726053151020200.00%40100.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
2Americans2110000012571100000010281010000023-120.500122032001198461915890387887260702411344250.00%30100.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
3Barracuda1000000167-1000000000001000000167-110.500611170011984619449038788726056116254250.00%3233.33%01317214361.46%1013180356.18%54088760.88%136010221091322586302
4Bears11000000312000000000001100000031221.00036900119846193990387887260349222100.00%10100.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
5Bruins21100000440110000001011010000034-120.500459011198461977903878872607719842600.00%40100.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
6Checkers21100000642000000000002110000064220.50069150111984619102903878872604398499222.22%3166.67%01317214361.46%1013180356.18%54088760.88%136010221091322586302
7Comets4400000046541330000003523311000000113881.0004679125011198461942890387887260892218705240.00%80100.00%11317214361.46%1013180356.18%54088760.88%136010221091322586302
8Condors1100000010191100000010190000000000021.00010162600119846198990387887260205034100.00%000.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
9Crunch311000011012-220100001610-41100000042230.5001019290011984619107903878872601163924761000.00%12375.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
10Devils11000000936110000009360000000000021.00091625001198461965903878872604120425300.00%110.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
11Griffins2000000268-2000000000002000000268-220.5006111700119846197790387887260732311348112.50%3166.67%01317214361.46%1013180356.18%54088760.88%136010221091322586302
12Gulls2100100012102110000007611000100054141.00012233500119846191199038788726068222464125.00%10100.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
13Heat11000000532000000000001100000053221.00051015001198461958903878872606619623100.00%3166.67%01317214361.46%1013180356.18%54088760.88%136010221091322586302
14IceHogs320000011413111000000321210000011111050.8331425390011984619128903878872601193814706116.67%7528.57%01317214361.46%1013180356.18%54088760.88%136010221091322586302
15Marlies3300000013852200000010641100000032161.0001324370011984619119903878872601353920659222.22%9188.89%01317214361.46%1013180356.18%54088760.88%136010221091322586302
16Monsters2110000067-1110000004311010000024-220.5006111700119846196590387887260671718416116.67%9277.78%01317214361.46%1013180356.18%54088760.88%136010221091322586302
17Moose1100000011291100000011290000000000021.0001120310011984619108903878872601832232150.00%10100.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
18Penguins3300000027111611000000826220000001991061.0002747740011984619234903878872601082314807342.86%6183.33%01317214361.46%1013180356.18%54088760.88%136010221091322586302
19Rampage21000001770110000005411000000123-130.7507132000119846198690387887260812217472150.00%50100.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
20Reign11000000514110000005140000000000021.0005914001198461933903878872603796153133.33%30100.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
21Roadrunners11000000615000000000001100000061521.0006915001198461940903878872602966195240.00%3166.67%01317214361.46%1013180356.18%54088760.88%136010221091322586302
22Rocket2020000027-5000000000002020000027-500.00023500119846198090387887260611416387114.29%8275.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
23Senators11000000312110000003120000000000021.000369001198461943903878872604798165120.00%30100.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
24Stars1010000014-31010000014-30000000000000.000123001198461942903878872602911620300.00%3233.33%01317214361.46%1013180356.18%54088760.88%136010221091322586302
25Thunderbirds22000000963110000005411100000042241.0009162500119846197690387887260751120704125.00%10190.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
Total50338011162661511152622200011164709424116011051028121770.7702664697350311984619268290387887260182850329111311282821.88%1292878.29%11317214361.46%1013180356.18%54088760.88%136010221091322586302
26Wild11000000752110000007520000000000021.000712190011984619569038788726035184173266.67%2150.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
27Wolf Pack31000110131032100001011741000010023-150.833132235001198461911090387887260142372678500.00%12375.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
28Wolves11000000615110000006150000000000021.00061218001198461951903878872603994323133.33%20100.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302
_Since Last GM Reset50338011162661511152622200011164709424116011051028121770.7702664697350311984619268290387887260182850329111311282821.88%1292878.29%11317214361.46%1013180356.18%54088760.88%136010221091322586302
_Vs Conference292060011115777801512100011983761148500100594019440.75915727242903119846191638903878872601038275179665751418.67%801383.75%11317214361.46%1013180356.18%54088760.88%136010221091322586302
_Vs Division1292001106436285400001032151775200100322111210.875641111750111984619615903878872604351157229531619.35%32875.00%01317214361.46%1013180356.18%54088760.88%136010221091322586302

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
5077SOL126646973526821828503291113103
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
503381116266151
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
26222001116470
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
24116110510281
Derniers 10 Matchs
WLOTWOTL SOWSOL
530002
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1282821.88%1292878.29%1
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
9038788726011984619
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1317214361.46%1013180356.18%54088760.88%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
136010221091322586302


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2020-10-0610Phantoms10Penguins2WSommaire du Match
4 - 2020-10-0828Americans2Phantoms10WSommaire du Match
6 - 2020-10-1041Wild5Phantoms7WSommaire du Match
9 - 2020-10-1364Comets1Phantoms15WSommaire du Match
11 - 2020-10-1578Phantoms2Griffins3LXXSommaire du Match
13 - 2020-10-1791Phantoms3Bruins4LSommaire du Match
15 - 2020-10-19106Marlies4Phantoms6WSommaire du Match
17 - 2020-10-21124Comets1Phantoms8WSommaire du Match
18 - 2020-10-22132Phantoms2Rocket6LSommaire du Match
21 - 2020-10-25147Phantoms6IceHogs5WSommaire du Match
23 - 2020-10-27163Phantoms2Rampage3LXXSommaire du Match
25 - 2020-10-29179Senators1Phantoms3WSommaire du Match
28 - 2020-11-01198Crunch4Phantoms3LXXSommaire du Match
30 - 2020-11-03213Phantoms9Penguins7WSommaire du Match
32 - 2020-11-05230Monsters3Phantoms4WSommaire du Match
35 - 2020-11-08250Phantoms4Thunderbirds2WSommaire du Match
37 - 2020-11-10264Wolves1Phantoms6WSommaire du Match
40 - 2020-11-13284Phantoms3Bears1WSommaire du Match
41 - 2020-11-14293Admirals4Phantoms7WSommaire du Match
44 - 2020-11-17316Wolf Pack4Phantoms7WSommaire du Match
47 - 2020-11-20335Phantoms2Monsters4LSommaire du Match
48 - 2020-11-21349Moose2Phantoms11WSommaire du Match
51 - 2020-11-24373Phantoms4Griffins5LXXSommaire du Match
52 - 2020-11-25378Penguins2Phantoms8WSommaire du Match
55 - 2020-11-28400Phantoms6Roadrunners1WSommaire du Match
56 - 2020-11-29410Stars4Phantoms1LSommaire du Match
59 - 2020-12-02430Phantoms3Marlies2WSommaire du Match
60 - 2020-12-03441Bruins0Phantoms1WSommaire du Match
63 - 2020-12-06463Phantoms4Crunch2WSommaire du Match
65 - 2020-12-08472Reign1Phantoms5WSommaire du Match
67 - 2020-12-10487Phantoms3Checkers0WSommaire du Match
69 - 2020-12-12498Phantoms5Heat3WSommaire du Match
70 - 2020-12-13510Condors1Phantoms10WSommaire du Match
73 - 2020-12-16531Devils3Phantoms9WSommaire du Match
75 - 2020-12-18548Phantoms5Gulls4WXSommaire du Match
78 - 2020-12-21565Wolf Pack3Phantoms4WXXSommaire du Match
80 - 2020-12-23585Phantoms0Rocket1LSommaire du Match
82 - 2020-12-25595Comets0Phantoms12WSommaire du Match
84 - 2020-12-27611Phantoms2Wolf Pack3LXSommaire du Match
86 - 2020-12-29625IceHogs2Phantoms3WSommaire du Match
88 - 2020-12-31643Phantoms2Americans3LSommaire du Match
90 - 2021-01-02657Gulls6Phantoms7WSommaire du Match
92 - 2021-01-04668Phantoms5IceHogs6LXXSommaire du Match
95 - 2021-01-07690Crunch6Phantoms3LSommaire du Match
98 - 2021-01-10710Phantoms11Comets3WSommaire du Match
100 - 2021-01-12722Thunderbirds4Phantoms5WSommaire du Match
102 - 2021-01-14740Phantoms3Checkers4LSommaire du Match
104 - 2021-01-16754Rampage4Phantoms5WSommaire du Match
107 - 2021-01-19778Marlies2Phantoms4WSommaire du Match
109 - 2021-01-21786Phantoms6Barracuda7LXXSommaire du Match
111 - 2021-01-23801Phantoms-Bruins-
113 - 2021-01-25814Checkers-Phantoms-
116 - 2021-01-28838Phantoms-Condors-
118 - 2021-01-30848Eagles-Phantoms-
119 - 2021-01-31860Phantoms-Penguins-
121 - 2021-02-02875Phantoms-Reign-
123 - 2021-02-04883Senators-Phantoms-
127 - 2021-02-08908Wild-Phantoms-
129 - 2021-02-10924Phantoms-Senators-
130 - 2021-02-11936Rocket-Phantoms-
133 - 2021-02-14950Phantoms-Thunderbirds-
135 - 2021-02-16968Sound Tigers-Phantoms-
137 - 2021-02-18984Phantoms-Wild-
139 - 2021-02-20996Phantoms-Wolves-
140 - 2021-02-211005Monsters-Phantoms-
142 - 2021-02-231025Phantoms-Eagles-
144 - 2021-02-251035Bears-Phantoms-
147 - 2021-02-281052Phantoms-Moose-
149 - 2021-03-021066Heat-Phantoms-
152 - 2021-03-051090Phantoms-Stars-
153 - 2021-03-061099Sound Tigers-Phantoms-
155 - 2021-03-081112Phantoms-Rampage-
156 - 2021-03-091126Barracuda-Phantoms-
159 - 2021-03-121151Roadrunners-Phantoms-
161 - 2021-03-141164Phantoms-Devils-
165 - 2021-03-181185Griffins-Phantoms-
167 - 2021-03-201193Phantoms-Devils-
169 - 2021-03-221212Americans-Phantoms-
170 - 2021-03-231217Phantoms-Sound Tigers-
172 - 2021-03-251223Phantoms-Admirals-
177 - 2021-03-301247Bears-Phantoms-
179 - 2021-04-011256Phantoms-Sound Tigers-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
15 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
822,077$ 1,209,750$ 832,167$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 822,077$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 72 6,647$ 478,584$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
282512004241285192934124100312114895534127100112013797401022855067910911371939271993387089536215264496314483918421.48%3926184.44%31672284958.69%1431258355.40%755128558.75%2133147217626061065558
382452803213240188524124150101011991284121130220312197249024042366346987068529421008984931322366711100117103185316.67%4266784.27%51842307159.98%1597273058.50%698121157.64%2120149117996011031529
482472500253268176924127900122140766441201600131128100289426847574315116737410296210199159996324707601592203558810317.52%6619186.23%111884321958.53%1788316756.46%703124856.33%1975131119416661048525
58255190123228417910541269002221469551412910010101388454110284506790091208377530809801030105432224061454519562234419.73%2445477.87%31832294362.25%1372248755.17%729125058.32%2216162617245441014530
682393402133295209864119180101215111041412016011211449945782955368315312385827330110701045115457278279449521752154621.40%2142886.92%31456310946.83%1328294045.17%632127949.41%2179157517705381010531
7824720012573201971234130800012178849441171201245142113299432056388328138938312359911661187120091278282449321712074220.29%2133484.04%51741324553.65%1472297749.45%743133255.78%2194160417765451011525
88238310112935928277411817001141661402641201401015193142517635956792613156116847386412731307124877339499638618541783318.54%1713480.12%41794319956.08%1719319953.74%799140956.71%204815211967532963481
88238310112935928277411817001141661402641201401015193142517635956792613156116847386412731307124877339499638618541783318.54%1713480.12%41794319956.08%1719319953.74%799140956.71%204815211967532963481
950338011162661511152622200011164709424116011051028121772664697350311984619268290387887260182850329111311282821.88%1292878.29%11317214361.46%1013180356.18%54088760.88%136010221091322586302
Total Saison Régulière706393216014142643267618568203542081050561218137890147735218511109814251298955343797267646127288144911397917067129013962595239601525234086842615216334242646619.21%262143183.56%39153322697756.83%134392508553.57%63981131056.57%182781314615801489086964465
Séries
21165000003435-16420000020164523000001419-51234629600101211130797103106137992168193501224.00%571082.46%015533146.83%16039540.51%8217147.95%2541762688013967
323167000007454201082000003020101385000004434103274133207112318303810261257277156782043704901141614.04%1442483.33%249688655.98%44382453.76%19635255.68%561380557180305151
41165000002925453200000151236330000014131122951801171010236712298127203951172852866868.82%1131190.27%125545056.67%25147952.40%9715961.01%2681722829314267
5624000001521-631200000912-33120000069-34152641006432168544043312204810617618738.89%35974.29%06221029.52%7824831.45%329434.04%14293187528538
6514000001718-12110000086230300000912-32173148009440134513449021056381481300.00%19478.95%04115326.80%7521335.21%247830.77%9963139386128
71165000003435-16420000019145523000001521-612346094011110103467126160155263771218726440820.00%38878.95%027248456.20%21438855.15%9917556.57%2992192487413367
Total Séries673730000002031881532211100000101802135161900000102108-67420336356623665868112253711692757932259638105415573034916.17%4066683.74%31281251450.95%1221254747.94%530102951.51%162411051683519868421