ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH

Phantoms

GP: 81 | W: 40 | L: 31 | OTL: 10 | P: 90
GF: 354 | GA: 279 | PP%: 18.18% | PK%: 80.00%
DG: Francois Gamache | Morale : 50 | Moyenne d'Équipe : 62
Prochain matchs #1261 vs Americans
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Christian FischerXX100.00814487668373846552646754666562072650
2Christoffer EhnXX100.00703788638073726270615867566564039630
3Keegan KolesarX100.00744177588694955752555659586362050610
4Martin Necas (R)X100.00573690637880706071625958556062050610
5Bobby ButlerX100.00583691567293915557545253498072050600
6Mikhail Vorobyev (R)X100.00573789607975655866595760536362050600
7J.C. Beaudin (R)X100.00583684547874765362565558536265050590
8Dillon HeatheringtonX100.00663788599181725830595357526764051610
9Michael PaliottaX100.00723983548880745330535157467166050590
Rayé
MOYENNE D'ÉQUIPE100.0066388659828078585458565854666405161
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Hunter Miska100.0076656372757476757476756771050650
2Jon Gillies100.0071807897706971706971706973050640
Rayé
MOYENNE D'ÉQUIPE100.007473718573727473727473687205065
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Martin NecasPhantoms (PHI)C815862120553001442875921644539.80%85163820.235510611411017883358.41%196900051.4627000775
2Mikhail VorobyevPhantoms (PHI)C8167431102220011626754417638012.32%101136016.79571244860000317559.40%169200041.62120009113
3Bobby ButlerPhantoms (PHI)RW814458102532801481754721393529.32%56149818.50459461470001265257.27%11000011.3612000267
4Keegan KolesarPhantoms (PHI)RW81454792303802501674581143239.83%44144517.8531417720002995157.22%18000041.27111000733
5Michael PaliottaPhantoms (PHI)D8112758713775284113226751275.31%163173621.4312335102000274300.00%000001.0000001244
6Christoffer EhnPhantoms (PHI)C/LW65483078-118014925445613035010.53%79137321.1479165512510131245460.98%188900031.14011000533
7J.C. BeaudinPhantoms (PHI)C812729561912094139292652179.25%60128415.863710381401013374156.83%90100000.8711000043
8Dillon HeatheringtonPhantoms (PHI)D47534391516094548333646.02%7599021.070442272000071200.00%000000.7900000022
9Devon ToewsFlyersD25731382875293062174611.29%3554021.643362136011159100.00%000001.4001010031
10Dan HamhuisFlyersD1641519146052638162110.53%1337923.710221433101237000.00%000001.0000000001
11Evan RodriguesFlyersC/LW/RW1464107007288712506.90%126318.831128250003270050.00%2600000.7602000001
12Christian FischerPhantoms (PHI)C/RW4134-3201752111204.76%39423.6300019000080066.67%900000.8500000001
Stats d'équipe Total ou en Moyenne6573244317552522541013371545333195224039.73%7151260619.1932467836299441524687351659.09%6776000171.20637011324334
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Hunter MiskaPhantoms (PHI)814031100.9203.30488018326833320410.66739810553
2Jon GilliesPhantoms (PHI)10000.9471.6237001190000.0000081000
Stats d'équipe Total ou en Moyenne824031100.9203.28491818326933510410.667398181553


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Bobby ButlerPhantoms (PHI)RW311987-04-26No189 Lbs6 ft0NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Christian FischerPhantoms (PHI)C/RW211997-04-15No214 Lbs6 ft2NoNoNo2Pro & Farm1,075,833$0$0$No1,075,833$Lien / Lien NHL
Christoffer EhnPhantoms (PHI)C/LW221996-04-05No181 Lbs6 ft3NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien / Lien NHL
Dillon HeatheringtonPhantoms (PHI)D231995-05-09No225 Lbs6 ft4NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Hunter MiskaPhantoms (PHI)G231995-07-07No175 Lbs6 ft1NoNoNo1Pro & Farm1,775,000$0$0$NoLien / Lien NHL
J.C. BeaudinPhantoms (PHI)C211997-03-25Yes185 Lbs6 ft1NoNoNo2Pro & Farm816,667$0$0$No816,667$Lien / Lien NHL
Jon GilliesPhantoms (PHI)G241994-01-22No223 Lbs6 ft6NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien / Lien NHL
Keegan KolesarPhantoms (PHI)RW211997-04-08No227 Lbs6 ft2NoNoNo2Pro & Farm905,000$0$0$No905,000$Lien / Lien NHL
Martin NecasPhantoms (PHI)C191999-01-15Yes189 Lbs6 ft2NoNoNo3Pro & Farm1,431,666$0$0$No1,431,666$1,431,666$Lien / Lien NHL
Michael PaliottaPhantoms (PHI)D251993-04-06No207 Lbs6 ft4NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Mikhail VorobyevPhantoms (PHI)C211997-01-05Yes194 Lbs6 ft2NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1122.82201 Lbs6 ft21.73959,470$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Christoffer Ehn30122
2Martin NecasBobby Butler30122
3Mikhail VorobyevKeegan Kolesar25122
4J.C. Beaudin15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Michael Paliotta30122
230122
325122
4Michael Paliotta15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Mikhail VorobyevChristoffer Ehn60122
2J.C. BeaudinMartin NecasBobby Butler40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Michael Paliotta60122
240122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Christoffer Ehn60122
2Keegan KolesarMartin Necas40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Michael Paliotta60122
240122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
160122Michael Paliotta60122
2Christoffer Ehn4012240122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Christoffer Ehn60122
2Keegan KolesarMartin Necas40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Michael Paliotta60122
240122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Christoffer EhnKeegan KolesarMichael Paliotta
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Christoffer EhnKeegan KolesarMichael Paliotta
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Mikhail Vorobyev, Bobby Butler, J.C. BeaudinMikhail Vorobyev, Bobby ButlerJ.C. Beaudin
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Michael Paliotta, Michael Paliotta,
Tirs de Pénalité
, Christoffer Ehn, Keegan Kolesar, Martin Necas, Bobby Butler
Gardien
#1 : Hunter Miska, #2 : Jon Gillies


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21000001871110000004221000000145-130.7508111900156115807149125512921230777726648300.00%30100.00%11757314755.83%1690316353.43%785138856.56%202315021944526951475
2Americans20200000411-720200000411-70000000000000.0004711001561158075412551292123077125421440200.00%70100.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
3Barracuda2110000056-1110000003211010000024-220.5005611001561158078512551292123077882412444125.00%6183.33%01757314755.83%1690316353.43%785138856.56%202315021944526951475
4Bears413000001416-220200000710-32110000076120.2501422361015611580717212551292123077183642291500.00%9366.67%01757314755.83%1690316353.43%785138856.56%202315021944526951475
5Bruins30200001812-42020000058-31000000134-110.1678132100156115807941255129212307713138205510220.00%10370.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
6Checkers43001000197122200000093621001000104681.00019315000156115807182125512921230771544316829111.11%8275.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
7Comets22000000205151100000011381100000092741.000203454001561158071461255129212307751141065100.00%4250.00%21757314755.83%1690316353.43%785138856.56%202315021944526951475
8Condors2200000012111110000007071100000051441.000122234011561158071291255129212307750184552150.00%20100.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
9Crunch30300000813-51010000035-22020000058-300.0008101800156115807126125512921230771363710631300.00%4250.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
10Devils44000000329232200000017413220000001551081.00032558701156115807281125512921230771353614925120.00%6183.33%01757314755.83%1690316353.43%785138856.56%202315021944526951475
11Eagles210000019721000000134-11100000063330.75091524001561158078212551292123077782213339333.33%20100.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
12Griffins3100011011831000010023-12100001095450.83311112200156115807174125512921230771163916829333.33%7185.71%01757314755.83%1690316353.43%785138856.56%202315021944526951475
13Gulls20200000511-61010000025-31010000036-300.000591400156115807651255129212307782354556116.67%20100.00%11757314755.83%1690316353.43%785138856.56%202315021944526951475
14Heat2200000020218110000001001011000000102841.000203858011561158071541255129212307751111056200.00%50100.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
15IceHogs2100000110821000000134-11100000074330.7501017270015611580786125512921230777315124013430.77%60100.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
16Marlies3120000069-32110000067-11010000002-220.333610160015611580710012551292123077119331660900.00%70100.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
17Monsters413000001120-92110000057-220200000613-720.25011172800156115807124125512921230771695416839111.11%8362.50%01757314755.83%1690316353.43%785138856.56%202315021944526951475
18Moose220000001156110000005321100000062441.00011162700156115807161125512921230778523848400.00%4175.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
19Penguins44000000351520220000001971222000000168881.000354883001561158072221255129212307720466301073266.67%13284.62%01757314755.83%1690316353.43%785138856.56%202315021944526951475
20Rampage2020000059-41010000024-21010000035-200.0005712001561158077412551292123077108264414250.00%10100.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
21Reign2110000057-2110000004311010000014-320.500581300156115807621255129212307764298345120.00%4175.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
22Roadrunners2110000067-11010000025-31100000042220.500691500156115807791255129212307793194516233.33%10100.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
23Rocket30200001914-52020000059-41000000145-110.167917260015611580796125512921230771194414556116.67%7271.43%01757314755.83%1690316353.43%785138856.56%202315021944526951475
24Senators330000002471711000000615220000001861261.0002440640015611580722812551292123077116291672100.00%70100.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
25Sound Tigers41300000715-820200000412-82110000033020.2507815001561158071291255129212307717236297512216.67%9366.67%01757314755.83%1690316353.43%785138856.56%202315021944526951475
26Stars22000000164121100000052311000000112941.00016244000156115807136125512921230777515847100.00%4175.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
27Thunderbirds31100001111011010000003-321000001117430.50011182900156115807130125512921230771364112733133.33%6266.67%01757314755.83%1690316353.43%785138856.56%202315021944526951475
Total813731011293542797541181700114166140264019140101518813949900.55635456091413156115807381312551292123077335298438418311763218.18%1703480.00%41757314755.83%1690316353.43%785138856.56%202315021944526951475
29Wild20100001510-51000000134-11010000026-410.25058130015611580779125512921230771022810534125.00%5180.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
30Wolf Pack412000101317-42100001086220200000511-640.50013213400156115807148125512921230771775720909111.11%10370.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
31Wolves2000000257-21000000123-11000000134-120.500581300156115807661255129212307783206417114.29%30100.00%01757314755.83%1690316353.43%785138856.56%202315021944526951475
_Since Last GM Reset813731011293542797541181700114166140264019140101518813949900.55635456091413156115807381312551292123077335298438418311763218.18%1703480.00%41757314755.83%1690316353.43%785138856.56%202315021944526951475
_Vs Conference462120010132101605024101300010104891522117010031067135490.5332103345441115611580721081255129212307719585802431020881112.50%1072576.64%21757314755.83%1690316353.43%785138856.56%202315021944526951475
_Vs Division281111010121319932145700010694920146401002625012280.50013120233311156115807125812551292123077119435614762052815.38%631773.02%01757314755.83%1690316353.43%785138856.56%202315021944526951475

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
8190W135456091438133352984384183113
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8137311129354279
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4118170114166140
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4019141015188139
Derniers 10 Matchs
WLOTWOTL SOWSOL
530011
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1763218.18%1703480.00%4
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
12551292123077156115807
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1757314755.83%1690316353.43%785138856.56%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
202315021944526951475


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2019-10-0413IceHogs4Phantoms3LXXSommaire du Match
8 - 2019-10-0945Devils0Phantoms8WSommaire du Match
11 - 2019-10-1273Phantoms9Comets2WSommaire du Match
14 - 2019-10-1588Phantoms10Heat2WSommaire du Match
15 - 2019-10-1695Phantoms5Condors1WSommaire du Match
18 - 2019-10-19118Stars2Phantoms5WSommaire du Match
20 - 2019-10-21130Wolves3Phantoms2LXXSommaire du Match
23 - 2019-10-24151Phantoms7IceHogs4WSommaire du Match
25 - 2019-10-26165Monsters2Phantoms3WSommaire du Match
26 - 2019-10-27174Phantoms0Sound Tigers1LSommaire du Match
28 - 2019-10-29182Phantoms6Penguins1WSommaire du Match
31 - 2019-11-01196Phantoms7Devils3WSommaire du Match
32 - 2019-11-02210Marlies1Phantoms2WSommaire du Match
35 - 2019-11-05226Checkers1Phantoms6WSommaire du Match
37 - 2019-11-07240Rocket5Phantoms2LSommaire du Match
39 - 2019-11-09254Phantoms0Marlies2LSommaire du Match
40 - 2019-11-10268Phantoms3Bruins4LXXSommaire du Match
43 - 2019-11-13283Bears4Phantoms3LSommaire du Match
45 - 2019-11-15298Phantoms9Senators3WSommaire du Match
46 - 2019-11-16307Sound Tigers5Phantoms2LSommaire du Match
49 - 2019-11-19319Phantoms9Thunderbirds4WSommaire du Match
51 - 2019-11-21336Phantoms3Checkers2WXSommaire du Match
53 - 2019-11-23349Heat0Phantoms10WSommaire du Match
55 - 2019-11-25367Comets3Phantoms11WSommaire du Match
57 - 2019-11-27384Phantoms3Monsters6LSommaire du Match
59 - 2019-11-29397Griffins3Phantoms2LXSommaire du Match
60 - 2019-11-30404Phantoms4Rocket5LXXSommaire du Match
63 - 2019-12-03428Marlies6Phantoms4LSommaire du Match
65 - 2019-12-05442Roadrunners5Phantoms2LSommaire du Match
67 - 2019-12-07452Senators1Phantoms6WSommaire du Match
71 - 2019-12-11486Phantoms6Eagles3WSommaire du Match
74 - 2019-12-14507Phantoms2Wild6LSommaire du Match
75 - 2019-12-15515Phantoms6Moose2WSommaire du Match
77 - 2019-12-17528Gulls5Phantoms2LSommaire du Match
79 - 2019-12-19540Americans6Phantoms2LSommaire du Match
81 - 2019-12-21558Phantoms9Senators3WSommaire du Match
83 - 2019-12-23574Wolf Pack3Phantoms4WSommaire du Match
88 - 2019-12-28601Phantoms2Barracuda4LSommaire du Match
89 - 2019-12-29610Phantoms3Gulls6LSommaire du Match
91 - 2019-12-31622Phantoms1Reign4LSommaire du Match
93 - 2020-01-02638Phantoms3Wolves4LXXSommaire du Match
95 - 2020-01-04650Phantoms4Roadrunners2WSommaire du Match
98 - 2020-01-07668Phantoms7Checkers2WSommaire du Match
99 - 2020-01-08676Bears6Phantoms4LSommaire du Match
102 - 2020-01-11695Crunch5Phantoms3LSommaire du Match
104 - 2020-01-13711Bruins3Phantoms2LSommaire du Match
106 - 2020-01-15726Phantoms3Rampage5LSommaire du Match
107 - 2020-01-16731Rocket4Phantoms3LSommaire du Match
109 - 2020-01-18750Reign3Phantoms4WSommaire du Match
112 - 2020-01-21763Penguins4Phantoms8WSommaire du Match
122 - 2020-01-31786Phantoms10Penguins7WSommaire du Match
123 - 2020-02-01799Eagles4Phantoms3LXXSommaire du Match
125 - 2020-02-03811Phantoms5Griffins2WSommaire du Match
128 - 2020-02-06832Devils4Phantoms9WSommaire du Match
130 - 2020-02-08850Phantoms5Bears2WSommaire du Match
132 - 2020-02-10861Thunderbirds3Phantoms0LSommaire du Match
133 - 2020-02-11869Phantoms3Sound Tigers2WSommaire du Match
135 - 2020-02-13883Phantoms2Thunderbirds3LXXSommaire du Match
137 - 2020-02-15897Phantoms3Crunch4LSommaire du Match
140 - 2020-02-18920Monsters5Phantoms2LSommaire du Match
142 - 2020-02-20936Phantoms3Monsters7LSommaire du Match
144 - 2020-02-22949Moose3Phantoms5WSommaire du Match
147 - 2020-02-25972Barracuda2Phantoms3WSommaire du Match
150 - 2020-02-28994Wolf Pack3Phantoms4WXXSommaire du Match
152 - 2020-03-011011Phantoms2Wolf Pack5LSommaire du Match
155 - 2020-03-041029Phantoms2Bears4LSommaire du Match
156 - 2020-03-051037Checkers2Phantoms3WSommaire du Match
158 - 2020-03-071057Americans5Phantoms2LSommaire du Match
161 - 2020-03-101073Bruins5Phantoms3LSommaire du Match
163 - 2020-03-121085Phantoms2Crunch4LSommaire du Match
165 - 2020-03-141098Wild4Phantoms3LXXSommaire du Match
166 - 2020-03-151109Condors0Phantoms7WSommaire du Match
168 - 2020-03-171125Rampage4Phantoms2LSommaire du Match
171 - 2020-03-201149Phantoms11Stars2WSommaire du Match
172 - 2020-03-211159Phantoms4Admirals5LXXSommaire du Match
175 - 2020-03-241179Sound Tigers7Phantoms2LSommaire du Match
177 - 2020-03-261196Phantoms4Griffins3WXXSommaire du Match
179 - 2020-03-281206Phantoms8Devils2WSommaire du Match
180 - 2020-03-291216Penguins3Phantoms11WSommaire du Match
183 - 2020-04-011239Phantoms3Wolf Pack6LSommaire du Match
184 - 2020-04-021246Admirals2Phantoms4WSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
186 - 2020-04-041261Phantoms-Americans-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,082,817$ 1,055,417$ 947,834$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 1,082,817$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 3 5,644$ 16,932$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
282512004241285192934124100312114895534127100112013797401022855067910911371939271993387089536215264496314483918421.48%3926184.44%31672284958.69%1431258355.40%755128558.75%2133147217626061065558
382452803213240188524124150101011991284121130220312197249024042366346987068529421008984931322366711100117103185316.67%4266784.27%51842307159.98%1597273058.50%698121157.64%2120149117996011031529
482472500253268176924127900122140766441201600131128100289426847574315116737410296210199159996324707601592203558810317.52%6619186.23%111884321958.53%1788316756.46%703124856.33%1975131119416661048525
58255190123228417910541269002221469551412910010101388454110284506790091208377530809801030105432224061454519562234419.73%2445477.87%31832294362.25%1372248755.17%729125058.32%2216162617245441014530
682393402133295209864119180101215111041412016011211449945782955368315312385827330110701045115457278279449521752154621.40%2142886.92%31456310946.83%1328294045.17%632127949.41%2179157517705381010531
7824720012573201971234130800012178849441171201245142113299432056388328138938312359911661187120091278282449321712074220.29%2133484.04%51741324553.65%1472297749.45%743133255.78%2194160417765451011525
88137310112935427975411817001141661402640191401015188139499035456091413156115807381312551292123077335298438418311763218.18%1703480.00%41757314755.83%1690316353.43%785138856.56%202315021944526951475
Total Saison Régulière57332117701212232820461420626287168860551013104869135728615391077131599872926965820463569561513438645905575522416743173237463388181445331547313326211840419.07%232036984.09%34121842158356.45%106782004753.26%5045899356.10%148441058412719402971333676
Séries
21165000003435-16420000020164523000001419-51234629600101211130797103106137992168193501224.00%571082.46%015533146.83%16039540.51%8217147.95%2541762688013967
323167000007454201082000003020101385000004434103274133207112318303810261257277156782043704901141614.04%1442483.33%249688655.98%44382453.76%19635255.68%561380557180305151
41165000002925453200000151236330000014131122951801171010236712298127203951172852866868.82%1131190.27%125545056.67%25147952.40%9715961.01%2681722829314267
5624000001521-631200000912-33120000069-34152641006432168544043312204810617618738.89%35974.29%06221029.52%7824831.45%329434.04%14293187528538
6514000001718-12110000086230300000912-32173148009440134513449021056381481300.00%19478.95%04115326.80%7521335.21%247830.77%9963139386128
71165000003435-16420000019145523000001521-612346094011110103467126160155263771218726440820.00%38878.95%027248456.20%21438855.15%9917556.57%2992192487413367
Total Séries673730000002031881532211100000101802135161900000102108-67420336356623665868112253711692757932259638105415573034916.17%4066683.74%31281251450.95%1221254747.94%530102951.51%162411051683519868421