ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH

Americans

GP: 52 | W: 26 | L: 21 | OTL: 5 | P: 57
GF: 190 | GA: 188 | PP%: 23.88% | PK%: 76.77%
DG: Hugo Ste-Marie | Morale : 50 | Moyenne d'Équipe : 62
Prochain matchs #797 vs Wolf Pack
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Cole SchneiderX100.00654789638086876265616164627870050640291650,000$
2Sam SteelX100.00563985677079736683706461676364043640212863,333$
3Pontus AbergXX100.00594383667375726558636461667367050640261700,000$
4Markus HannikainenX100.00643986627780786354606059637367050630261750,000$
5Riley BarberX100.00614786637577736457616259647166050630251700,000$
6Joe VelenoX100.006345856277848759715556635862640506101931,243,750$
7Patrick BrownX100.00664387597577745762586156597568050610272700,000$
8Daniel AudetteX100.00554985616488905971605754616764050600231650,000$
9Jakob StukelX100.00563984577175725653555859566563044590221650,000$
10Victor MeteX100.00543889686782846730715968506365047640211870,000$
11Christian FolinX100.00784685608775695830595764537769050630281800,000$
12Gustav ForslingX100.00594287657278716330646261556764050630231874,125$
13Xavier OuelletX100.00644389637681726230615864557376050630261700,000$
14Adam ClendeningX100.00595081637281776230645863547568050630262700,000$
15Zach TrotmanX100.00674685608776675830595761557868050620292700,000$
16Ville Heinola (R)X100.005739906568727563306455575159600506101831,137,500$
17Chris WidemanX100.00574584616876715930625857547870050610291700,000$
Rayé
1Sam VigneaultX100.00664989568187885862545557566965050600241650,000$
MOYENNE D'ÉQUIPE100.0061448662747977614961596058706704962
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1J-F Berube100.0071898773706971706971707783050640
Rayé
MOYENNE D'ÉQUIPE100.007189877370697170697170778305064
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Pontus AbergAmericans (BUF)LW/RW49283058132601141032457316511.43%14115523.58257351140002885149.85%32900031.0004000802
2Cole SchneiderAmericans (BUF)LW492627531126095111275891859.45%1199520.315611441050001315260.55%10900011.0604000611
3Patrick BrownAmericans (BUF)C49232245922088126149489815.44%995119.4245929104000000253.81%119300000.9500000172
4Sam SteelAmericans (BUF)C342024441040491021533811213.07%1080723.75581321760002663160.68%76300011.0904000451
5Riley BarberAmericans (BUF)RW4920204014809257183499510.93%1286717.706511481140000345147.46%5900220.9201000045
6Gustav ForslingAmericans (BUF)D49531363260956310531814.76%6998420.09371048122000074000.00%000000.7300000021
7Xavier OuelletAmericans (BUF)D4972734-620095619330647.53%4993519.103693694000060110.00%000000.7300000001
8Victor MeteAmericans (BUF)D354232714036767722555.19%3870820.253363280000060000.00%000100.7600000111
9Adam ClendeningAmericans (BUF)D5242327-1210094618929514.49%7096618.5819104094000065000.00%000000.5600000111
10Markus HannikainenAmericans (BUF)LW52151126-251207378188521547.98%1482615.8900002000041050.68%7300000.6311000014
11Ville HeinolaAmericans (BUF)D492192182015382412128.33%303757.660000000000000.00%000001.1200000001
12Daniel AudetteAmericans (BUF)C4961420-20135615611030825.45%696119.6300000000002056.04%36400000.4200001000
13Zach TrotmanAmericans (BUF)D5241620112059255112407.84%4970413.5400000000021000.00%000000.5700000021
14Christian FolinAmericans (BUF)D4961319-1220774037183316.22%3864513.180003200000200.00%000000.5900000100
15Joe VelenoAmericans (BUF)C396915-196055959726766.19%562215.9600010000031053.60%72200000.4800000001
16Eeli TolvanenSabresLW/RW245813-24027529024525.56%848620.2700015560001160041.67%4800000.5300000011
17Chris WidemanAmericans (BUF)D522101256052203111296.45%434378.420001100008000.00%000000.5500000001
Stats d'équipe Total ou en Moyenne781183327510-10223511771164199759413849.16%4751343117.20325486353971000653625854.95%366000370.76114001222524
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1J-F BerubeAmericans (BUF)49261850.9073.2028892215416570300.75012490531
Stats d'équipe Total ou en Moyenne49261850.9073.2028892215416570300.75012490531


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Adam ClendeningAmericans (BUF)D261992-10-26No189 Lbs6 ft0NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien / Lien NHL
Chris WidemanAmericans (BUF)D291990-01-07No190 Lbs5 ft10NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Christian FolinAmericans (BUF)D281991-02-09No204 Lbs6 ft4NoNoNo1Pro & Farm800,000$0$0$NoLien / Lien NHL
Cole SchneiderAmericans (BUF)LW291990-08-26No199 Lbs6 ft2NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Daniel AudetteAmericans (BUF)C231996-05-06No176 Lbs5 ft8NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Gustav ForslingAmericans (BUF)D231996-06-12No186 Lbs6 ft0NoNoNo1Pro & Farm874,125$0$0$NoLien / Lien NHL
J-F BerubeAmericans (BUF)G281991-07-13No177 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Jakob StukelAmericans (BUF)LW221997-03-06No182 Lbs6 ft0NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Joe VelenoAmericans (BUF)C192000-01-13No198 Lbs6 ft1NoNoNo3Pro & Farm1,243,750$0$0$No1,243,750$1,243,750$Lien
Markus HannikainenAmericans (BUF)LW261993-03-26No200 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
Patrick BrownAmericans (BUF)C271992-05-29No214 Lbs5 ft11NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien / Lien NHL
Pontus AbergAmericans (BUF)LW/RW261993-09-23No194 Lbs6 ft0NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Riley BarberAmericans (BUF)RW251994-02-07No203 Lbs6 ft0NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Sam SteelAmericans (BUF)C211998-02-03No189 Lbs5 ft11NoNoNo2Pro & Farm863,333$0$0$No863,333$Lien / Lien NHL
Sam VigneaultAmericans (BUF)C241995-09-07No202 Lbs6 ft2NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Victor MeteAmericans (BUF)D211998-06-07No187 Lbs5 ft9NoNoNo1Pro & Farm870,000$0$0$NoLien / Lien NHL
Ville HeinolaAmericans (BUF)D182001-03-02Yes178 Lbs5 ft11NoNoNo3Pro & Farm1,137,500$0$0$No1,137,500$1,137,500$
Xavier OuelletAmericans (BUF)D261993-07-29No193 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Zach TrotmanAmericans (BUF)D291990-08-26No217 Lbs6 ft3NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1924.74194 Lbs6 ft01.42775,721$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Pontus AbergRiley Barber30122
2Cole SchneiderPatrick Brown30122
3Markus HannikainenDaniel Audette25122
4Pontus AbergDaniel Audette15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Gustav Forsling30122
2Xavier OuelletAdam Clendening30122
3Christian FolinZach Trotman25122
4Chris WidemanVille Heinola15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Pontus AbergRiley Barber60122
2Cole SchneiderPatrick Brown40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Gustav Forsling60122
2Xavier OuelletAdam Clendening40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Pontus Aberg60122
2Cole SchneiderRiley Barber40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Gustav Forsling60122
2Xavier OuelletAdam Clendening40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Pontus Aberg60122Gustav Forsling60122
240122Xavier OuelletAdam Clendening40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Pontus Aberg60122
2Cole SchneiderRiley Barber40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Gustav Forsling60122
2Xavier OuelletAdam Clendening40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Pontus AbergRiley BarberGustav Forsling
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Pontus AbergRiley BarberGustav Forsling
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Markus Hannikainen, , Markus Hannikainen,
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Christian Folin, Zach Trotman, Chris WidemanChristian FolinZach Trotman, Chris Wideman
Tirs de Pénalité
Pontus Aberg, , Cole Schneider, Riley Barber, Markus Hannikainen
Gardien
#1 : J-F Berube, #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals21000010743100000103211100000042241.000710170079595029169172366041751612547342.86%6183.33%0982190851.47%836175347.69%44590849.01%13379671153347656339
2Barracuda22000000734220000007340000000000041.0007132000795950273691723660417115145122100.00%6183.33%0982190851.47%836175347.69%44590849.01%13379671153347656339
3Bears11000000321110000003210000000000021.0003580079595025769172366041289021000.00%000.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
4Bruins21000100761110000004221000010034-130.750714210079595027369172366041421010496233.33%30100.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
5Checkers2020000068-22020000068-20000000000000.000610160079595027969172366041592510502150.00%5180.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
6Comets1100000010280000000000011000000102821.00010192900795950290691723660412972302150.00%000.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
7Condors220000002031711000000716110000001321141.00020395900795950217669172366041441625122100.00%10100.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
8Crunch2110000057-2110000003211010000025-320.5005712007959502586917236604175216416116.67%30100.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
9Griffins1010000013-21010000013-20000000000000.0001230079595022869172366041269622100.00%3166.67%0982190851.47%836175347.69%44590849.01%13379671153347656339
10Gulls11000000321000000000001100000032121.00034700795950242691723660413934263133.33%20100.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
11Heat1010000039-6000000000001010000039-600.0003690079595025069172366041448436100.00%10100.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
12IceHogs22000000633110000004221100000021141.00061218007959502516917236604199321044200.00%50100.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
13Marlies20001100770200011007700000000000030.750711180079595027769172366041641314318337.50%7185.71%0982190851.47%836175347.69%44590849.01%13379671153347656339
14Monsters211000005231010000012-11100000040420.50058130179595025869172366041561916376233.33%80100.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
15Moose5320000025214422000001720-31100000081760.60025436800795950225669172366041235581015113430.77%5260.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
16Penguins330000002071322000000143111100000064261.0002035550179595021326917236604191268667114.29%30100.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
17Phantoms21100000512-71100000032110100000210-820.500510150079595027069172366041158491342300.00%4250.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
18Rampage11000000523000000000001100000052321.0005101500795950245691723660413674203133.33%10100.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
19Reign1010000012-1000000000001010000012-100.00012300795950224691723660413111423200.00%20100.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
20Roadrunners1010000018-7000000000001010000018-700.00012300795950236691723660413810225300.00%110.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
21Rocket2200000010730000000000022000000107341.000101929007959502676917236604155226345120.00%30100.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
22Senators20200000414-100000000000020200000414-1000.0004711007959502756917236604192228497342.86%4325.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
23Sound Tigers31100001111101010000014-321000001107330.500112031007959502120691723660411172916851417.14%6183.33%0982190851.47%836175347.69%44590849.01%13379671153347656339
24Stars2020000038-51010000023-11010000015-400.000369007959502716917236604166234401119.09%2150.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
25Thunderbirds1010000026-4000000000001010000026-400.00024600795950225691723660414512629100.00%220.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
Total522421012131901882251290111186741227121200102104114-10570.548190342532027959502210169172366041194951322512311343223.88%992376.77%0982190851.47%836175347.69%44590849.01%13379671153347656339
26Wild20100001510-51010000004-41000000156-110.250591400795950271691723660417612646400.00%3166.67%0982190851.47%836175347.69%44590849.01%13379671153347656339
27Wolf Pack1010000014-3000000000001010000014-300.00012300795950222691723660414968162150.00%4175.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
28Wolves30200001715-81000000134-120200000411-710.1677132000795950284691723660411092320621119.09%9455.56%0982190851.47%836175347.69%44590849.01%13379671153347656339
_Since Last GM Reset522421012131901882251290111186741227121200102104114-10570.548190342532027959502210169172366041194951322512311343223.88%992376.77%0982190851.47%836175347.69%44590849.01%13379671153347656339
_Vs Conference24119012019193-21163011004130111356001015063-13270.5639116325401795950294569172366041904251107543631523.81%441175.00%0982190851.47%836175347.69%44590849.01%13379671153347656339
_Vs Division1243011003650-145100110015141733000002136-15110.45836641000079595024036917236604139910956255341029.41%25772.00%0982190851.47%836175347.69%44590849.01%13379671153347656339

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
5257W119034253221011949513225123102
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
5224211213190188
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
2512911118674
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
2712120102104114
Derniers 10 Matchs
WLOTWOTL SOWSOL
640000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1343223.88%992376.77%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
691723660417959502
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
982190851.47%836175347.69%44590849.01%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
13379671153347656339


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2020-10-069Moose6Americans3LSommaire du Match
4 - 2020-10-0828Americans2Phantoms10LSommaire du Match
6 - 2020-10-1038Moose6Americans4LSommaire du Match
9 - 2020-10-1363Americans4Monsters0WSommaire du Match
11 - 2020-10-1576Penguins3Americans8WSommaire du Match
12 - 2020-10-1686Americans3Wolves6LSommaire du Match
15 - 2020-10-19104Americans1Reign2LSommaire du Match
16 - 2020-10-20118Checkers3Americans2LSommaire du Match
19 - 2020-10-23137Crunch2Americans3WSommaire du Match
21 - 2020-10-25151Americans3Bruins4LXSommaire du Match
23 - 2020-10-27166Marlies2Americans1LXSommaire du Match
25 - 2020-10-29181Americans1Wolf Pack4LSommaire du Match
27 - 2020-10-31189Americans2Senators9LSommaire du Match
29 - 2020-11-02208Monsters2Americans1LSommaire du Match
31 - 2020-11-04221Americans3Sound Tigers4LXXSommaire du Match
33 - 2020-11-06237Barracuda2Americans4WSommaire du Match
36 - 2020-11-09256Marlies5Americans6WXSommaire du Match
38 - 2020-11-11269Americans1Stars5LSommaire du Match
40 - 2020-11-13289Americans8Moose1WSommaire du Match
41 - 2020-11-14298Bruins2Americans4WSommaire du Match
44 - 2020-11-17320Griffins3Americans1LSommaire du Match
46 - 2020-11-19334Americans5Rocket4WSommaire du Match
48 - 2020-11-21347Americans2Thunderbirds6LSommaire du Match
50 - 2020-11-23362Bears2Americans3WSommaire du Match
52 - 2020-11-25379Americans5Wild6LXXSommaire du Match
54 - 2020-11-27393Wild4Americans0LSommaire du Match
56 - 2020-11-29405Americans3Heat9LSommaire du Match
58 - 2020-12-01425Barracuda1Americans3WSommaire du Match
60 - 2020-12-03443Americans6Penguins4WSommaire du Match
61 - 2020-12-04451Americans3Gulls2WSommaire du Match
63 - 2020-12-06462IceHogs2Americans4WSommaire du Match
66 - 2020-12-09481Americans5Rampage2WSommaire du Match
67 - 2020-12-10489Wolves4Americans3LXXSommaire du Match
70 - 2020-12-13509Americans1Wolves5LSommaire du Match
72 - 2020-12-15522Admirals2Americans3WXXSommaire du Match
74 - 2020-12-17543Checkers5Americans4LSommaire du Match
76 - 2020-12-19555Americans5Rocket3WSommaire du Match
78 - 2020-12-21564Americans13Condors2WSommaire du Match
80 - 2020-12-23581Moose4Americans5WSommaire du Match
83 - 2020-12-26599Americans1Roadrunners8LSommaire du Match
84 - 2020-12-27614Condors1Americans7WSommaire du Match
87 - 2020-12-30636Americans2IceHogs1WSommaire du Match
88 - 2020-12-31643Phantoms2Americans3WSommaire du Match
91 - 2021-01-03665Americans2Crunch5LSommaire du Match
93 - 2021-01-05675Stars3Americans2LSommaire du Match
95 - 2021-01-07689Americans7Sound Tigers3WSommaire du Match
97 - 2021-01-09705Penguins0Americans6WSommaire du Match
99 - 2021-01-11717Americans4Admirals2WSommaire du Match
101 - 2021-01-13735Sound Tigers4Americans1LSommaire du Match
103 - 2021-01-15747Americans10Comets2WSommaire du Match
104 - 2021-01-16762Americans2Senators5LSommaire du Match
106 - 2021-01-18772Moose4Americans5WSommaire du Match
110 - 2021-01-22797Wolf Pack-Americans-
113 - 2021-01-25819Americans-Barracuda-
114 - 2021-01-26829Senators-Americans-
117 - 2021-01-29846Americans-Bears-
119 - 2021-01-31859Thunderbirds-Americans-
121 - 2021-02-02872Americans-Bears-
124 - 2021-02-05891Comets-Americans-
126 - 2021-02-07903Americans-Devils-
128 - 2021-02-09914Americans-Monsters-
129 - 2021-02-10927Roadrunners-Americans-
132 - 2021-02-13949Americans-Bruins-
134 - 2021-02-15956Monsters-Americans-
137 - 2021-02-18982Rocket-Americans-
139 - 2021-02-20997Americans-Eagles-
141 - 2021-02-221012Americans-Marlies-
142 - 2021-02-231021Heat-Americans-
145 - 2021-02-261044Reign-Americans-
149 - 2021-03-021071Thunderbirds-Americans-
152 - 2021-03-051092Americans-Reign-
153 - 2021-03-061103Crunch-Americans-
155 - 2021-03-081115Americans-Griffins-
157 - 2021-03-101133Devils-Americans-
158 - 2021-03-111138Americans-Griffins-
162 - 2021-03-151166Gulls-Americans-
163 - 2021-03-161176Americans-Checkers-
168 - 2021-03-211199Eagles-Americans-
169 - 2021-03-221212Americans-Phantoms-
173 - 2021-03-261228Devils-Americans-
177 - 2021-03-301246Rampage-Americans-
179 - 2021-04-011261Americans-Wolf Pack-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
16 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
959,872$ 1,473,870$ 448,333$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 959,872$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 76 8,098$ 615,448$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
282215202115252359-10741112501112123177-5441102701003129182-5342252429681219785677271789787392843280781184314393416117.89%3289172.26%01475271654.31%1210237650.93%803141956.59%1969139119635851024502
382244702135211322-11141132202004111156-4541112500131100166-66482113675782384794362564842845833704306122162713782834014.13%2545677.95%1964238640.40%1235365333.81%475126937.43%14259642598617944400
4824626011532451816441241200041132914141221401112113902392245441686061047263927919209548945924037401219169358511920.34%5087784.84%61629312452.14%1473298149.41%582115950.22%2042139718996391019514
5824033021512632006341201802001131105264120150015013295378026337563821097788172888929941100140313888934919242224018.02%1413873.05%0886268732.97%1020319231.95%401118633.81%198314592032534942465
68231400332328927415411816021221701343641132401201119140-2162289531820421121066693259103511021095574009115743121881903719.47%1903482.11%21201285442.08%1345380635.34%504130438.65%174312282263570956453
782116201323173361-188415320120177177-100416300012296184-88221733034761171514832765926901910465065138524121791883418.09%992376.77%0717253628.27%1121441725.38%312124225.12%13879372640579925403
8824631011123952611344129110001021012288411720011021851394692395684107954166145823377912791269121230306888334818811944925.26%1432880.42%31652302954.54%1453303547.87%755140853.62%211215751864519965497
8824631011123952611344129110001021012288411720011021851394692395684107954166145823377912791269121230306888334818811944925.26%1432880.42%31652302954.54%1453303547.87%755140853.62%211215751864519965497
9522421012131901882251290111186741227121200102104114-1057190342532027959502210169172366041194951322512311343223.88%992376.77%0982190851.47%836175347.69%44590849.01%13379671153347656339
Total Saison Régulière70828934301414212724132407635316115609510121250115892355128187059111511631249-8658724134156656921339768205824926643879888778745416298138482463115794233146119.78%190539879.11%15111582426945.98%111462824839.46%50321130344.52%161151149618279491484004073
Séries
41688000004045-5844000001820-2844000002225-3164072112011216111572190178191135581592673671402215.71%991782.83%027066140.85%21665832.83%7124528.98%38525939312819698
840400000719-1220200000510-52020000029-707132000232011831474002278025801218.33%10370.00%02812023.33%5022022.73%135822.41%6947123284719
Total Séries20812000004764-171046000002330-71046000002434-10164785132011419131690221225231137852392924471522315.13%1092081.65%029878138.16%26687830.30%8430327.72%454307517157243117