ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH
LHSRSM


Sound Tigers
GP: 3 | W: 2 | L: 1
GF: 9 | GA: 9 | PP%: 18.18% | PK%: 83.33%
DG: Mathieu Turgeon | Morale : 50 | Moyenne d'Équipe : 61
Prochain matchs #26 vs Bruins
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Michael RasmussenXXX100.007848876398757164736162656361620166402021,710,833$
2Eric Tangradi (C)X100.00694786609276695856596162587971050630301650,000$
3Ryan MacInnisX100.00644689618675736268615963616764050630231874,125$
4Andreas Martinsen (A)XX100.00734589608574755852575759607870050620291750,000$
5Anthony AngelloXX100.00685086599178795853576061586764050620231925,000$
6Brett MurrayX100.00834789589785875754565562586362050620211650,000$
7Nolan StevensXX100.00624588618085836067595662616764050620231700,000$
8Rhett GardnerXX100.00684689608871725866575962586764050620232925,000$
9Gabriel GagneX100.00684582608779805854575659606764050610221650,000$
10Joona KoppanenXX100.00694581578884825651535558566361050600212910,833$
11Mark FriedmanX100.00584587606981795830595761506964050610231825,000$
12Keaton MiddletonX100.00865979569987835530545462466362019610211650,000$
13Jake Dotchin (A)X100.00695370598573715830575760527166050610251700,000$
14Nicolas MelocheX100.00715382588583815630555259456563050600221925,000$
15Wiley ShermanX100.00745084559279785630545159456965050600241925,000$
Rayé
MOYENNE D'ÉQUIPE100.0071488559887978585057576155686404662
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Ukko-Pekka Luukkonen100.0072565486717072717072716165050630
2Colton Point100.0061545293605961605961606367050580
Rayé
MOYENNE D'ÉQUIPE100.006755539066656766656766626605061
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brett MurraySound Tigers (NYI)LW3437340235195921.05%07023.6311239000150040.00%500001.9700000200
2Andreas MartinsenSound Tigers (NYI)LW/RW31561205514877.14%15317.9802239000000050.00%400002.2200000010
3Nolan StevensSound Tigers (NYI)C/LW3235120361941010.53%15317.9810169000002046.51%8600001.8500000001
4Mark FriedmanSound Tigers (NYI)D30221401466150.00%57725.68000112000011000.00%000000.5200000000
5Nicolas MelocheSound Tigers (NYI)D3022000016210.00%16220.980114700008000.00%000000.6400000000
6Ryan MacInnisSound Tigers (NYI)C3112220316148117.14%27525.060000100000110048.09%13100000.5300000000
7Anthony AngelloSound Tigers (NYI)C/RW301100045141150.00%15719.260002100000500100.00%100000.3500000000
8Eric TangradiSound Tigers (NYI)LW310122066126128.33%17525.080001100000110080.00%500000.2700000000
9Wiley ShermanSound Tigers (NYI)D3011-1601485000.00%64615.410000000001000.00%000000.4300000000
10Gabriel GagneSound Tigers (NYI)RW3000-3203651110.00%14615.5400000000000066.67%300000.0000000000
11Joona KoppanenSound Tigers (NYI)C/LW3000-300739570.00%05117.1800000000040057.14%700000.0000000000
12Jake DotchinSound Tigers (NYI)D30000407610220.00%06120.550006700007000.00%000000.0000000000
13Rhett GardnerSound Tigers (NYI)C/LW3000-30011123100.00%04916.4700000000020053.57%5600000.0000000000
Stats d'équipe Total ou en Moyenne399182702809074145461006.21%1978220.0624626870001692049.66%29800000.6900000211
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Ukko-Pekka LuukkonenSound Tigers (NYI)32100.9172.901860091090000.000033000
Stats d'équipe Total ou en Moyenne32100.9172.901860091090000.000033000


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Andreas MartinsenSound Tigers (NYI)LW/RW291990-06-13No225 Lbs6 ft2NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
Anthony AngelloSound Tigers (NYI)C/RW231996-03-06No210 Lbs6 ft5NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Brett MurraySound Tigers (NYI)LW211998-07-20No236 Lbs6 ft5NoNoNo1Pro & Farm650,000$0$0$NoLien
Colton PointSound Tigers (NYI)G211998-03-04No235 Lbs6 ft4NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien / Lien NHL
Eric TangradiSound Tigers (NYI)LW301989-02-10No226 Lbs6 ft4NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Gabriel GagneSound Tigers (NYI)RW221996-11-11No186 Lbs6 ft5NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Jake DotchinSound Tigers (NYI)D251994-03-24No210 Lbs6 ft3NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Joona KoppanenSound Tigers (NYI)C/LW211998-02-25No192 Lbs6 ft5NoNoNo2Pro & Farm910,833$0$0$No910,833$Lien / Lien NHL
Keaton MiddletonSound Tigers (NYI)D211998-02-10No240 Lbs6 ft6NoNoNo1Pro & Farm650,000$0$0$NoLien
Mark FriedmanSound Tigers (NYI)D231995-12-25No185 Lbs5 ft11NoNoNo1Pro & Farm825,000$0$0$NoLien / Lien NHL
Michael RasmussenSound Tigers (NYI)C/LW/RW201999-04-17No229 Lbs6 ft6NoNoNo2Pro & Farm1,710,833$0$0$No1,710,833$Lien / Lien NHL
Nicolas MelocheSound Tigers (NYI)D221997-07-18No210 Lbs6 ft3NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Nolan StevensSound Tigers (NYI)C/LW231996-07-22No183 Lbs6 ft3NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Rhett GardnerSound Tigers (NYI)C/LW231996-02-28No225 Lbs6 ft3NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien / Lien NHL
Ryan MacInnisSound Tigers (NYI)C231996-02-14No191 Lbs6 ft4NoNoNo1Pro & Farm874,125$0$0$NoLien
Ukko-Pekka LuukkonenSound Tigers (NYI)G201999-03-09No196 Lbs6 ft4NoNoNo3Pro & Farm910,833$0$0$No910,833$910,833$Lien / Lien NHL
Wiley ShermanSound Tigers (NYI)D241995-05-24No200 Lbs6 ft6NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1723.00211 Lbs6 ft41.35859,213$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Eric TangradiRyan MacInnisAnthony Angello30122
2Brett MurrayNolan StevensAndreas Martinsen30122
3Joona KoppanenRhett GardnerGabriel Gagne25122
4Eric TangradiRyan MacInnisBrett Murray15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark Friedman30122
2Jake DotchinNicolas Meloche30122
3Wiley Sherman25122
4Mark Friedman15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Eric TangradiRyan MacInnisAnthony Angello60122
2Brett MurrayNolan StevensAndreas Martinsen40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark Friedman60122
2Jake DotchinNicolas Meloche40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Ryan MacInnisEric Tangradi60122
2Brett MurrayAnthony Angello40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark Friedman60122
2Jake DotchinNicolas Meloche40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Ryan MacInnis60122Mark Friedman60122
2Eric Tangradi40122Jake DotchinNicolas Meloche40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Ryan MacInnisEric Tangradi60122
2Brett MurrayAnthony Angello40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark Friedman60122
2Jake DotchinNicolas Meloche40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Eric TangradiRyan MacInnisAnthony AngelloMark Friedman
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Eric TangradiRyan MacInnisAnthony AngelloMark Friedman
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Rhett Gardner, Gabriel Gagne, Joona KoppanenRhett Gardner, Gabriel GagneJoona Koppanen
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Wiley Sherman, Jake Dotchin, Nicolas MelocheWiley ShermanJake Dotchin, Nicolas Meloche
Tirs de Pénalité
Ryan MacInnis, Eric Tangradi, Brett Murray, Anthony Angello, Nolan Stevens
Gardien
#1 : , #2 : Ukko-Pekka Luukkonen


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bruins32100000990220000009631010000003-340.667918270041311453749491010919289011218.18%12283.33%07013850.72%6111951.26%174141.46%815965213819
Total32100000990220000009631010000003-340.667918270041311453749491010919289011218.18%12283.33%07013850.72%6111951.26%174141.46%815965213819
_Since Last GM Reset32100000990220000009631010000003-340.667918270041311453749491010919289011218.18%12283.33%07013850.72%6111951.26%174141.46%815965213819
_Vs Conference32100000990220000009631010000003-340.667918270041311453749491010919289011218.18%12283.33%07013850.72%6111951.26%174141.46%815965213819

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
34L19182714510919289000
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
321000099
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
220000096
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
101000003
Derniers 10 Matchs
WLOTWOTL SOWSOL
111000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
11218.18%12283.33%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
374949104131
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
7013850.72%6111951.26%174141.46%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
815965213819


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2021-04-062Bruins2Sound Tigers4WSommaire du Match
3 - 2021-04-0810Bruins4Sound Tigers5WXSommaire du Match
5 - 2021-04-1018Sound Tigers0Bruins3LSommaire du Match
7 - 2021-04-1226Sound Tigers-Bruins-
9 - 2021-04-1434Bruins-Sound Tigers-
11 - 2021-04-1642Sound Tigers-Bruins-
13 - 2021-04-1850Bruins-Sound Tigers-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacitéPopularité de l'Équipe
39 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
0$ 1,460,661$ 898,249$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 0$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 8 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
28150130744330319810540276042011511005141237032421529854100303531834291248583142616850867870492231684109216703486618.97%4468181.84%51427272252.42%1325263250.34%678129652.31%2040139118146101063544
3824427033232472103741221303111119100194122140021212811018882474326791597529310263790282987650239566798815573355516.42%4176185.37%41601286155.96%1383264052.39%674123454.62%2076143218296081054544
48243300004525420648412512000131309238411818000321241141086254459713331077766727819498919295424517461653199056210218.15%71610884.92%91866320458.24%1773312056.83%714124557.35%2018134218906591056527
582383003353253214394119130223213811721411917011211159718762534477001583917112295898099295765244274671521372335423.18%3255981.85%41835293962.44%1586266959.42%745126358.99%2105149718315691032526
682412701010331923485412312000511771106741181501052142124188231955887715139937616353311841173114676276184861521692204319.55%2555180.00%21884323358.27%1629293855.45%767135156.77%2150154418025671032536
7824326032353042198541231102113155105504120150112214911435863045338371412493816349911381185114160281476164023051873317.65%2905979.66%62050333261.52%1727306156.42%806134060.15%2165155717825621021528
88251190151536019916141278012031991019841241100312161986310236068310430101541001045356612301127117266276883956221921645432.93%2453486.12%21661299255.51%1479284651.97%737130856.35%2262166717075231000526
88251190151536019916141278012031991019841241100312161986310236068310430101541001045356612301127117266276883956221921645432.93%2453486.12%21661299255.51%1479284651.97%737130856.35%2262166717075231000526
98243190417833625680411713021441641343041266020341721225011733659893414124100101143382112110631146106284285058420421984321.72%2464681.30%31882325557.82%1693302655.95%811138058.77%2103149618545731046534
Total Saison Régulière73740421002323374027361935801368210960151115211432960472369194114081222191304975329839273649247660105511067917798928538958492549409592234726980741118254241150420.90%318553383.27%37158672753057.64%140742577854.60%66691172556.88%191851359616220519993084794
Séries
2624000001619-331200000910-13120000079-241627431056501605353540166537212626519.23%36683.33%011419857.58%10418855.32%418051.25%151103133447638
3624000001816230300000611-532100000125741834520185502188059745199607312134617.65%30583.33%016425364.82%12719864.14%538760.92%159114132427538
6624000001530-15321000001013-330300000517-1241527420074401876059680285863617321419.05%17570.59%08121936.99%9526835.45%4611141.44%11675169447334
7404000001117-620200000610-42020000057-20111728004430127364048315345281199333.33%14378.57%07414052.86%7116543.03%377052.86%8858106325425
8734000002125-4413000001216-4321000009906213859109750250899070131197311771500.00%11190.91%011225144.62%11429338.91%5512245.08%158113176488542
932100000990220000009631010000003-34918270041311453749491010919289011218.18%12283.33%07013850.72%6111951.26%174141.46%815965213819
Total Séries3211210000090116-2617611000005266-1415510000003850-12229016125121372725110873553503631912233602688061162017.24%1202281.67%0615119951.29%572123146.47%24951148.73%756524784234404198