ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH

Wolves

GP: 47 | W: 28 | L: 16 | OTL: 3 | P: 59
GF: 204 | GA: 142 | PP%: 23.89% | PK%: 84.21%
DG: | Morale : 50 | Moyenne d'Équipe : 62
Prochain matchs #756 vs Moose
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Curtis Lazar (A)XXX100.00664589627779786172606066626965050630241700,000$
2Dominic TurgeonX100.00634788628083766074595763616764050620231750,000$
3Mason AppletonXXX100.00624387607973776266595861606764044620231758,333$
4Tyler BensonX100.00594388627276736458635961646362050620212863,333$
5T.J. TynanXX100.00563984646277756376655861647568050620271700,000$
6David GustafssonX100.00624290628064666172605863596162050610193925,000$
7Tommy NovakX100.00574484637386876175625657636562050610223925,000$
8Fabian ZetterlundXX100.00533989596082815762555658596163050590203925,000$
9Mikey EyssimontXX100.00595481587087895753555654586764050590231925,000$
10Jakub LaukoXX100.00524578596872715852545753566062050580193894,167$
11Roman Polak (A)X100.008946705988838158306752834784740506503311,750,000$
12Jacob LarssonX100.00624287647882796330625765526562050630221894,166$
13Josh MahuraX100.00594388667282756330615758546361050620212910,833$
14Ryan LindgrenX100.006948786573797263306256665063650486202121,100,000$
15Frederic AllardX100.00574888617387895930585356456563050600212921,666$
16Johnathan Kovacevic (R)X100.00725183578881795630545458466564050600222925,000$
Rayé
MOYENNE D'ÉQUIPE100.0062458561758078605360576156666405061
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Alex Lyon100.0075696778747375747375747581050660
2Eric Comrie100.0075686672747375747375746973050650
Rayé
MOYENNE D'ÉQUIPE100.007569677574737574737574727705066
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jacob LarssonWolves (VGK)D4710384818220455980285512.50%70110823.5813419700001108000.00%000000.8700000121
2Dominic TurgeonWolves (VGK)C4719284721200521391634611211.66%1091719.5203313840114952259.77%119800011.0203000242
3T.J. TynanWolves (VGK)C/RW4716274322404563184441218.70%280317.101672395000031065.45%5500001.0701000103
4Roman PolakWolves (VGK)D47103242264601967188244411.36%7298921.06213920000199100.00%000000.8500000252
5Ryan LindgrenWolves (VGK)D4313294224255574381203816.05%4582819.2785133471000082210.00%000001.0100001111
6Curtis LazarWolves (VGK)C/LW/RW4712233516341087100166611227.23%1090819.34268251000112630158.19%84900000.7712001201
7Josh MahuraWolves (VGK)D47823314140453570173611.43%4285918.2818922101000024110.00%000000.7200000100
8Tyler BensonWolves (VGK)LW4713183171404445152521238.55%675115.992351973000022051.85%5400010.8201000111
9David GustafssonWolves (VGK)C47141529111804268117336811.97%867714.42000000003393058.25%69700010.8600000301
10Carl GrundstromGolden KnightsLW/RW36121628174044481203310310.00%765518.2036923740000142144.19%4300000.8502000121
11Frederic AllardWolves (VGK)D475212623140253037173613.51%4379516.931121269000049200.00%000000.6500000120
12Mason AppletonWolves (VGK)C/LW/RW44121224191005160116379510.34%674316.89112155510141072055.84%7700010.6500000211
13Tommy NovakWolves (VGK)C47131124460357376236617.11%44429.42000340001132060.92%49900001.0801000120
14Par LindholmGolden KnightsC/LW1389171320162775245810.67%523618.19101362026351066.26%32900011.4401000111
15Fabian ZetterlundWolves (VGK)C/RW47491362016326519466.15%250810.820002170000261052.38%6300000.5100000011
16Johnathan KovacevicWolves (VGK)D342101210260802818111911.11%4358817.3200000011154000.00%000000.4100000001
17Mikey EyssimontWolves (VGK)C/LW368311480321843113218.60%039410.9600000000021060.47%4300000.5600000000
18Jakub LaukoWolves (VGK)C/LW333367001773072310.00%02467.4800000000040048.39%3100000.4900000000
Stats d'équipe Total ou en Moyenne756182327509252269159299461681507119710.83%3751245616.482343662228493362383023659.37%393800050.82111002202217
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Eric ComrieWolves (VGK)2617520.9012.73147102676740100.88992324201
2Alex LyonWolves (VGK)24111110.9003.21136642737300100.66732423210
Stats d'équipe Total ou en Moyenne50281630.9002.9628384414014040200.833124747411


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Alex LyonWolves (VGK)G261992-12-09No201 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
Curtis LazarWolves (VGK)C/LW/RW241995-02-02No211 Lbs6 ft0NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
David GustafssonWolves (VGK)C192000-04-11No196 Lbs6 ft2NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Lien
Dominic TurgeonWolves (VGK)C231996-02-25No199 Lbs6 ft2NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
Eric ComrieWolves (VGK)G241995-07-06No175 Lbs6 ft1NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien / Lien NHL
Fabian ZetterlundWolves (VGK)C/RW201999-08-25No195 Lbs5 ft1NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Lien
Frederic AllardWolves (VGK)D211997-12-27No179 Lbs6 ft1NoNoNo2Pro & Farm921,666$0$0$No921,666$Lien / Lien NHL
Jacob LarssonWolves (VGK)D221997-04-29No190 Lbs6 ft2NoNoNo1Pro & Farm894,166$0$0$NoLien / Lien NHL
Jakub LaukoWolves (VGK)C/LW192000-03-28No169 Lbs6 ft0NoNoNo3Pro & Farm894,167$0$0$No894,167$894,167$Lien
Johnathan KovacevicWolves (VGK)D221997-07-12Yes208 Lbs6 ft4NoNoNo2Pro & Farm925,000$0$0$No925,000$
Josh MahuraWolves (VGK)D211998-05-05No186 Lbs6 ft0NoNoNo2Pro & Farm910,833$0$0$No910,833$Lien / Lien NHL
Mason AppletonWolves (VGK)C/LW/RW231996-01-15No193 Lbs6 ft2NoNoNo1Pro & Farm758,333$0$0$NoLien / Lien NHL
Mikey EyssimontWolves (VGK)C/LW231996-09-09No180 Lbs6 ft0NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Roman PolakWolves (VGK)D331986-04-28No240 Lbs6 ft2NoNoNo1Pro & Farm1,750,000$0$0$NoLien / Lien NHL
Ryan LindgrenWolves (VGK)D211998-02-11No191 Lbs6 ft0NoNoNo2Pro & Farm1,100,000$0$0$No1,100,000$Lien / Lien NHL
T.J. TynanWolves (VGK)C/RW271992-02-25No165 Lbs5 ft8NoNoNo1Pro & Farm700,000$0$0$NoLien
Tommy NovakWolves (VGK)C221997-04-28No179 Lbs6 ft1NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Lien
Tyler BensonWolves (VGK)LW211998-03-15No190 Lbs6 ft0NoNoNo2Pro & Farm863,333$0$0$No863,333$Lien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1822.83192 Lbs6 ft01.78906,528$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Tyler BensonCurtis Lazar30122
2Dominic TurgeonT.J. Tynan30122
3Mikey EyssimontDavid GustafssonMason Appleton25122
4Jakub LaukoTommy NovakFabian Zetterlund15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Josh MahuraJacob Larsson30122
2Roman PolakRyan Lindgren30122
3Johnathan KovacevicFrederic Allard25122
4Roman PolakJacob Larsson15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Curtis LazarT.J. Tynan60122
2Tyler BensonDominic TurgeonMason Appleton40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Josh MahuraJacob Larsson60122
2Frederic AllardRyan Lindgren40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Dominic TurgeonMason Appleton60122
2David GustafssonCurtis Lazar40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Roman PolakJacob Larsson60122
2Johnathan KovacevicRyan Lindgren40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Curtis Lazar60122Roman PolakJacob Larsson60122
2David Gustafsson40122Johnathan KovacevicRyan Lindgren40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Curtis Lazar60122
2Dominic TurgeonT.J. Tynan40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Roman PolakJosh Mahura60122
2Jacob LarssonRyan Lindgren40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Curtis LazarT.J. TynanJosh MahuraJacob Larsson
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Curtis LazarRyan LindgrenRoman Polak
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Mason Appleton, , T.J. TynanTommy Novak, Fabian Zetterlund
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Jacob Larsson, Ryan Lindgren, Roman PolakJacob LarssonFrederic Allard, Jacob Larsson
Tirs de Pénalité
Curtis Lazar, , Dominic Turgeon, T.J. Tynan, Tyler Benson
Gardien
#1 : Eric Comrie, #2 : Alex Lyon


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals10001000431000000000001000100043121.0004711008659572305976556342033101029200.00%5180.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
2Americans3200001015782200000011471000001043161.00015274200865957210959765563420842524899444.44%11190.91%01010168759.87%887151058.74%47680159.43%1330980922307587314
3Barracuda2000010179-22000010179-20000000000020.50071320008659572745976556342059248567114.29%4175.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
4Bears2010000136-31000000123-11010000013-210.250369008659572765976556342049151759400.00%60100.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
5Checkers22000000853110000003211100000053241.000814220086595726259765563420502218254250.00%8275.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
6Comets330000002762111000000734220000002031761.000274774008659572225597655634206116106711100.00%50100.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
7Condors550000004273522000000161153300000026620101.00042771190286595723465976556342011627221304250.00%100100.00%21010168759.87%887151058.74%47680159.43%1330980922307587314
8Crunch21100000770110000005411010000023-120.5007132000865957245597655634206116639100.00%30100.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
9Devils20200000311-80000000000020200000311-800.000369008659572605976556342082184518112.50%20100.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
10Eagles2110000045-1110000002111010000024-220.5004711008659572605976556342067141536000.00%4175.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
11Griffins211000007611010000034-11100000042220.50071219008659572915976556342049178397114.29%40100.00%11010168759.87%887151058.74%47680159.43%1330980922307587314
12Gulls21100000880000000000002110000088020.500814220086595728359765563420571110436233.33%4250.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
13Heat11000000743110000007430000000000021.000713200086595724059765563420351310283133.33%5180.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
14IceHogs11000000624000000000001100000062421.00061218008659572355976556342024126274250.00%30100.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
15Marlies11000000312110000003120000000000021.000369008659572415976556342032126195120.00%30100.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
16Monsters11000000606110000006060000000000021.000611170186595723059765563420225227100.00%10100.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
17Penguins11000000743000000000001100000074321.0007111800865957249597655634201998156233.33%4175.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
18Phantoms1010000016-5000000000001010000016-500.0001230086595723959765563420519623200.00%3166.67%01010168759.87%887151058.74%47680159.43%1330980922307587314
19Rampage20200000610-420200000610-40000000000000.0006121800865957272597655634206427124311218.18%5180.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
20Reign211000004401010000001-11100000043120.50048120086595725659765563420621916333133.33%7185.71%01010168759.87%887151058.74%47680159.43%1330980922307587314
21Roadrunners1010000058-31010000058-30000000000000.00051015008659572295976556342039111226100.00%6433.33%01010168759.87%887151058.74%47680159.43%1330980922307587314
22Rocket321000009902110000068-21100000031240.6679172600865957280597655634201071720706116.67%10280.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
23Senators1010000023-11010000023-10000000000000.0002460086595722659765563420561527294125.00%70100.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
24Stars1010000034-11010000034-10000000000000.000358008659572475976556342026114245120.00%20100.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
Total47261601112204142622514800102104743022128010101006832590.628204372576048659572189459765563420140440530310811132723.89%1332184.21%31010168759.87%887151058.74%47680159.43%1330980922307587314
25Wild11000000642110000006420000000000021.0006101600865957233597655634203758175120.00%4175.00%01010168759.87%887151058.74%47680159.43%1330980922307587314
26Wolf Pack21100000431110000004041010000003-320.5004812018659572565976556342062251437400.00%7185.71%01010168759.87%887151058.74%47680159.43%1330980922307587314
_Since Last GM Reset47261601112204142622514800102104743022128010101006832590.628204372576048659572189459765563420140440530310811132723.89%1332184.21%31010168759.87%887151058.74%47680159.43%1330980922307587314
_Vs Conference24138011011157441146600101614615107201000542826300.625115211326038659572102659765563420690206143558591423.73%641379.69%31010168759.87%887151058.74%47680159.43%1330980922307587314
_Vs Division16430100010046548230000042261682001000582038100.313100182282028659572853597655634204291218838325832.00%41978.05%21010168759.87%887151058.74%47680159.43%1330980922307587314

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
4759L120437257618941404405303108104
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
4726161112204142
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
25148010210474
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
22128101010068
Derniers 10 Matchs
WLOTWOTL SOWSOL
720001
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1132723.89%1332184.21%3
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
597655634208659572
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1010168759.87%887151058.74%47680159.43%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
1330980922307587314


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2020-10-0614Wolves9Condors2WSommaire du Match
4 - 2020-10-0825Condors1Wolves11WSommaire du Match
6 - 2020-10-1040Wolves6IceHogs2WSommaire du Match
8 - 2020-10-1255Condors0Wolves5WSommaire du Match
10 - 2020-10-1468Wolves6Condors0WSommaire du Match
12 - 2020-10-1686Americans3Wolves6WSommaire du Match
14 - 2020-10-1899Wolves9Comets1WSommaire du Match
16 - 2020-10-20113Heat4Wolves7WSommaire du Match
19 - 2020-10-23134Rampage6Wolves4LSommaire du Match
23 - 2020-10-27161Stars4Wolves3LSommaire du Match
25 - 2020-10-29180Wolves2Eagles4LSommaire du Match
27 - 2020-10-31191Barracuda4Wolves3LXXSommaire du Match
29 - 2020-11-02209Wolves4Reign3WSommaire du Match
31 - 2020-11-04222Wolves2Devils5LSommaire du Match
32 - 2020-11-05232Rocket4Wolves1LSommaire du Match
35 - 2020-11-08248Wolves4Admirals3WXSommaire du Match
37 - 2020-11-10264Wolves1Phantoms6LSommaire du Match
38 - 2020-11-11271Griffins4Wolves3LSommaire du Match
40 - 2020-11-13290Senators3Wolves2LSommaire du Match
43 - 2020-11-16308Wolves5Gulls3WSommaire du Match
45 - 2020-11-18323Barracuda5Wolves4LXSommaire du Match
47 - 2020-11-20338Wolves0Wolf Pack3LSommaire du Match
49 - 2020-11-22352Reign1Wolves0LSommaire du Match
51 - 2020-11-24371Wolves3Gulls5LSommaire du Match
53 - 2020-11-26384Comets3Wolves7WSommaire du Match
55 - 2020-11-28398Wolves3Rocket1WSommaire du Match
57 - 2020-11-30413Monsters0Wolves6WSommaire du Match
59 - 2020-12-02435Wild4Wolves6WSommaire du Match
61 - 2020-12-04449Wolves11Comets2WSommaire du Match
65 - 2020-12-08473Checkers2Wolves3WSommaire du Match
67 - 2020-12-10489Wolves4Americans3WXXSommaire du Match
69 - 2020-12-12503Wolves1Devils6LSommaire du Match
70 - 2020-12-13509Americans1Wolves5WSommaire du Match
73 - 2020-12-16534Roadrunners8Wolves5LSommaire du Match
75 - 2020-12-18550Wolves4Griffins2WSommaire du Match
77 - 2020-12-20557Wolves5Checkers3WSommaire du Match
79 - 2020-12-22571Wolves2Crunch3LSommaire du Match
80 - 2020-12-23579Wolf Pack0Wolves4WSommaire du Match
83 - 2020-12-26601Marlies1Wolves3WSommaire du Match
85 - 2020-12-28618Wolves7Penguins4WSommaire du Match
87 - 2020-12-30634Eagles1Wolves2WSommaire du Match
89 - 2021-01-01652Wolves11Condors4WSommaire du Match
91 - 2021-01-03664Rocket4Wolves5WSommaire du Match
94 - 2021-01-06686Wolves1Bears3LSommaire du Match
96 - 2021-01-08694Bears3Wolves2LXXSommaire du Match
99 - 2021-01-11720Crunch4Wolves5WSommaire du Match
102 - 2021-01-14745Rampage4Wolves2LSommaire du Match
104 - 2021-01-16756Wolves-Moose-
107 - 2021-01-19779IceHogs-Wolves-
111 - 2021-01-23806Stars-Wolves-
113 - 2021-01-25817Wolves-IceHogs-
117 - 2021-01-29841Sound Tigers-Wolves-
120 - 2021-02-01866Wolves-Bruins-
121 - 2021-02-02871Wild-Wolves-
126 - 2021-02-07900Condors-Wolves-
128 - 2021-02-09918Wolves-Marlies-
130 - 2021-02-11932Heat-Wolves-
132 - 2021-02-13942Wolves-Heat-
134 - 2021-02-15963Bruins-Wolves-
136 - 2021-02-17974Wolves-Stars-
138 - 2021-02-19986Wolves-Senators-
139 - 2021-02-20996Phantoms-Wolves-
142 - 2021-02-231024Thunderbirds-Wolves-
144 - 2021-02-251037Wolves-Thunderbirds-
147 - 2021-02-281055Roadrunners-Wolves-
149 - 2021-03-021073Wolves-Roadrunners-
151 - 2021-03-041087Admirals-Wolves-
153 - 2021-03-061098Wolves-Thunderbirds-
155 - 2021-03-081116Wolves-Monsters-
156 - 2021-03-091119Devils-Wolves-
159 - 2021-03-121148Penguins-Wolves-
163 - 2021-03-161172Wolves-Sound Tigers-
165 - 2021-03-181181Moose-Wolves-
166 - 2021-03-191189Wolves-Reign-
169 - 2021-03-221208Wolves-Wild-
170 - 2021-03-231214Gulls-Wolves-
172 - 2021-03-251224Wolves-Rampage-
175 - 2021-03-281241Moose-Wolves-
176 - 2021-03-291244Wolves-Barracuda-
177 - 2021-03-301245Wolves-Eagles-
180 - 2021-04-021269Wolves-Rampage-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
181 - 2021-04-031271Wolves-Admirals-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
16 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,070,618$ 1,631,750$ 887,333$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 1,070,618$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 80 8,966$ 717,280$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
281283900455246281-3541141800243118137-1940142100212128144-16562464346800190787392510805840831662673754104316343426619.30%3928179.34%21406265253.02%1381273250.55%679133051.05%1882127419836241058514
382492502330258160984128901120147767141211601210111842798258450708311116686963003978102498525234271185015753816216.27%3494886.25%01792306958.39%1484274154.14%650115356.37%2139151117755921032538
482313701265229225441211201052135101344110250021394124-306222940163003876966122702887880917602681825161220065318015.07%6729985.27%61621298154.38%1536319348.11%626120851.82%1933128020026621047517
582274004506249274-2541132103202130137-741141901304119137-18542493806292410071747291892898696557329198031619082084421.15%1373772.99%01038263339.42%1001299533.42%480129537.07%184913592173536942449
68232370217328727512411816020321491321741142100141138143-56428747576243107937816339810601074121482350699837019532095224.88%1592783.02%31703300156.75%1695335750.49%736137853.41%196314452036552977474
78238320334228723651412114012301611204141171802112126116107628750178815120916992970973104493345301885443820652104822.86%1953383.08%21434282450.78%1406303446.34%634127949.57%213315671843540985508
882432202110436120615541201101153179103764123110105118210379863616531014171501059419346610891213113382248967841618061753419.43%1802685.56%61773298059.50%1447257656.17%789136657.76%236517721633510997539
882432202110436120615541201101153179103764123110105118210379863616531014171501059419346610891213113382248967841618061753419.43%1802685.56%61773298059.50%1447257656.17%789136657.76%236517721633510997539
94726160111220414262251480010210474302212801010100683259204372576048659572189459765563420140440530310811132723.89%1332184.21%31010168759.87%887151058.74%47680159.43%1330980922307587314
Total Saison Régulière7023172700172146312482200547735316912001010271713029833193491481500711191411801022158641248243196801124510067396749926327840689298745519238936883576415834234444719.07%239739883.40%28135502480754.62%122842471449.70%58591117652.42%179641296516004483886254395
Séries
2514000001427-1320200000612-631200000815-72142640006710153516141017453969325312.00%28871.43%09316058.13%7614153.90%458552.94%11478122386330
3844000002221142200000121204220000010918223759015890250807385122698510614544920.45%41685.37%013428047.86%12030239.74%6212549.60%1901262116410752
8734000001721-432100000107341300000714-761731481065512136367803259726013820315.00%29486.21%012024948.19%13826651.88%439744.33%167114164528844
Total Séries20812000005369-16945000002831-31147000002538-1316539414711172015161619420120615702210262376891516.85%981881.63%034768950.36%33470947.11%15030748.86%472318498156258127