ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH
LHSRSM


Senators
GP: 3 | W: 3 | L: 0
GF: 18 | GA: 7 | PP%: 40.00% | PK%: 66.67%
DG: Jonathan Belzile Mayruk | Morale : 50 | Moyenne d'Équipe : 62
Prochain matchs #27 vs Checkers
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Sonny MilanoXX100.00563985677375716653686261696766050640231874,125$
2Matt BeleskeyX100.006249856176788062555959636180720506303113,800,000$
3Matt PuempelXX100.00624589647882796257616163657367050630261675,000$
4Alex Barre-BouletX100.00514389675688916563626456676563050620222759,258$
5Kyle RauXX100.00563984636479806256616059637568050620261700,000$
6Michael BuntingXX100.00594884637276736158626059636965050620242737,500$
7Paul BittnerX100.00735187599085825855575660596764050620221863,333$
8Isac LundestromX100.00593886637279776274615759626163050610192925,000$
9Joseph BlandisiXX100.00584979617077795870615960587167050610251700,000$
10Graham KnottX100.00674688568376785451535257566563050590221935,833$
11Manuel WiedererX100.00564389587277765753555659586764050590221736,667$
12Dylan CoghlanX100.00624590597887895830575760456362050610212715,556$
13Jordan SchmaltzX100.00624389618078725930585760517367050610261700,000$
14Jack DoughertyX100.00644985578086885530545356456764050590231650,000$
15Patrick SieloffX100.00655480567881835430535257457166050590251700,000$
Rayé
MOYENNE D'ÉQUIPE100.0061458661758080605159585958696505061
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Laurent Brossoit100.0081858384807981807981807377050690
2Spencer Martin100.0068777583676668676668676973050620
Rayé
MOYENNE D'ÉQUIPE100.007581798474737574737574717505066
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Alex Barre-BouletSenators (OTT)C3246200251792311.76%35919.9801124000010163.64%7700002.0000000100
2Michael BuntingSenators (OTT)LW/RW3336200483082010.00%35919.9801124000010060.00%500002.0000000011
3Matt PuempelSenators (OTT)LW/RW3336400842252113.64%06822.8100003000002040.00%500001.7500000100
4Jordan SchmaltzSenators (OTT)D323530023101420.00%46521.711011200001000.00%000001.5400000010
5Isac LundestromSenators (OTT)C3224420342071710.00%44715.8800000000000066.07%5600001.6800000001
6Matt BeleskeySenators (OTT)LW3213300271831111.11%05317.86000230000410100.00%700001.1200000100
7Manuel WiedererSenators (OTT)RW321340016257178.00%04715.8800000000000066.67%300001.2600000000
8Kyle RauSenators (OTT)C/LW30333001108560.00%05317.8601123000040070.11%8700001.1200000000
9Patrick SieloffSenators (OTT)D3033200435130.00%34916.590000000000000.00%000001.2100000000
10Dylan CoghlanSenators (OTT)D31123005374314.29%46521.711011200001000.00%000000.6100000001
11Graham KnottSenators (OTT)C31121000262316.67%0186.2800000000000061.11%3600002.1200000000
12Paul BittnerSenators (OTT)LW3022100554150.00%1186.2800000000000075.00%400002.1200000000
13Jack DoughertySenators (OTT)D3011220016420.00%14916.590000000000000.00%000000.4000000000
Stats d'équipe Total ou en Moyenne39182846344037611785713510.11%2365816.8823510230000133166.43%28000001.4000000323
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Laurent BrossoitSenators (OTT)33000.9262.33180007950000.000030000
Stats d'équipe Total ou en Moyenne33000.9262.33180007950000.000030000


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Alex Barre-BouletSenators (OTT)C221997-05-21No170 Lbs5 ft1NoNoNo2Pro & Farm759,258$0$0$No759,258$Lien / Lien NHL
Dylan CoghlanSenators (OTT)D211998-02-19No190 Lbs6 ft2NoNoNo2Pro & Farm715,556$0$0$No715,556$Lien / Lien NHL
Graham KnottSenators (OTT)C221997-01-13No199 Lbs6 ft3NoNoNo1Pro & Farm935,833$0$0$NoLien / Lien NHL
Isac LundestromSenators (OTT)C191999-11-06No187 Lbs6 ft0NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien / Lien NHL
Jack DoughertySenators (OTT)D231996-05-25No196 Lbs6 ft2NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Jordan SchmaltzSenators (OTT)D261993-10-08No196 Lbs6 ft2NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Joseph BlandisiSenators (OTT)C/LW251994-07-18No187 Lbs5 ft11NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Kyle RauSenators (OTT)C/LW261992-10-24No176 Lbs5 ft8NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Laurent BrossoitSenators (OTT)G261993-03-23No204 Lbs6 ft3NoNoNo1Pro & Farm1,225,000$0$0$NoLien / Lien NHL
Manuel WiedererSenators (OTT)RW221996-11-21No175 Lbs6 ft1NoNoNo1Pro & Farm736,667$0$0$NoLien / Lien NHL
Matt BeleskeySenators (OTT)LW311988-06-07No207 Lbs6 ft0NoNoNo1Pro & Farm3,800,000$0$0$NoLien / Lien NHL
Matt PuempelSenators (OTT)LW/RW261993-01-24No201 Lbs6 ft1NoNoNo1Pro & Farm675,000$0$0$NoLien / Lien NHL
Michael BuntingSenators (OTT)LW/RW241995-09-17No197 Lbs5 ft11NoNoNo2Pro & Farm737,500$0$0$No737,500$Lien / Lien NHL
Patrick SieloffSenators (OTT)D251994-05-15No205 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Paul BittnerSenators (OTT)LW221996-11-04No205 Lbs6 ft5NoNoNo1Pro & Farm863,333$0$0$NoLien
Sonny MilanoSenators (OTT)LW/RW231996-05-12No194 Lbs6 ft0NoNoNo1Pro & Farm874,125$0$0$NoLien / Lien NHL
Spencer MartinSenators (OTT)G241995-06-08No200 Lbs6 ft3NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1723.94193 Lbs6 ft01.24964,545$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Matt BeleskeyKyle RauMatt Puempel35104
2Michael BuntingAlex Barre-Boulet27113
3Isac LundestromManuel Wiederer23131
4Paul BittnerGraham KnottMatt Puempel15140
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dylan CoghlanJordan Schmaltz35131
226131
3Jack DoughertyPatrick Sieloff24131
4Dylan CoghlanJordan Schmaltz15131
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Matt BeleskeyKyle RauMatt Puempel60104
2Michael BuntingAlex Barre-Boulet40104
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dylan CoghlanJordan Schmaltz60104
240104
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Kyle RauMatt Beleskey60140
2Alex Barre-BouletMichael Bunting40140
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dylan CoghlanJordan Schmaltz60140
240140
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Kyle Rau60140Dylan CoghlanJordan Schmaltz60140
2Alex Barre-Boulet4014040140
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Kyle RauMatt Beleskey60122
2Alex Barre-BouletMichael Bunting40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Dylan CoghlanJordan Schmaltz60122
240122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Matt BeleskeyKyle RauMatt PuempelDylan CoghlanJordan Schmaltz
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Matt BeleskeyKyle RauMatt PuempelDylan CoghlanJordan Schmaltz
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Paul Bittner, Alex Barre-Boulet, Paul Bittner
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Jack Dougherty, Patrick Sieloff, Jack Dougherty
Tirs de Pénalité
Matt Puempel, Matt Beleskey, Michael Bunting, Kyle Rau,
Gardien
#1 : Laurent Brossoit, #2 : Spencer Martin


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Checkers33000000187112200000013581100000052361.000182846003870179725057095266425240.00%3166.67%09313767.88%639764.95%365961.02%886855183518
Total33000000187112200000013581100000052361.000182846003870179725057095266425240.00%3166.67%09313767.88%639764.95%365961.02%886855183518
_Since Last GM Reset33000000187112200000013581100000052361.000182846003870179725057095266425240.00%3166.67%09313767.88%639764.95%365961.02%886855183518
_Vs Conference33000000187112200000013581100000052361.000182846003870179725057095266425240.00%3166.67%09313767.88%639764.95%365961.02%886855183518

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
36W3182846179952664200
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
3300000187
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
2200000135
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
110000052
Derniers 10 Matchs
WLOTWOTL SOWSOL
300000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
5240.00%3166.67%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
72505703870
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
9313767.88%639764.95%365961.02%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
886855183518


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2021-04-063Checkers3Senators5WSommaire du Match
3 - 2021-04-0811Checkers2Senators8WSommaire du Match
5 - 2021-04-1019Senators5Checkers2WSommaire du Match
7 - 2021-04-1227Senators-Checkers-
9 - 2021-04-1435Checkers-Senators-
11 - 2021-04-1643Senators-Checkers-
13 - 2021-04-1851Checkers-Senators-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacitéPopularité de l'Équipe
39 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
0$ 1,639,728$ 1,064,732$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 0$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 8 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
2824325024442862345241249001431431162741191602301143118258628649878436101101789265384485592356258772992215013467321.10%3716781.94%61454273553.16%1386272850.81%652131349.66%1986136019246191065530
382522301132265166994126120011113783544126110102112883451042654597240109384846304610131046972302220662104116533667520.49%4176384.89%61982315362.86%1588275657.62%723119360.60%2171152317445901033539
48245200117826618977412211001521318942412390102613510035902664827481910295611530049681055937992226716150519866158814.31%6039085.07%101837335354.79%1646293956.01%713126056.59%2121143818226501059542
582542102041318172146412980102116977924125130102014995541083185608780131141138511321210171068111033219164858020832214520.36%2604283.85%21864305161.09%1543259159.55%743128557.82%2222162717145441009530
682541404244397199198413050211219780117412490213220011981108397718111501016612010314419113591361142778238064852319892766122.10%2414382.16%22250352763.79%1518254659.62%827135760.94%240518051586528987528
782333302527297291641131802215133150-1741201500312164141236629748578241122977483550115311731180784140122741720921873317.65%1853879.46%11461309047.28%1656389842.48%661137648.04%175012512270570960449
88287300100239644-4054153600000123308-1854133700100116336-220162394026410012470450306610321010102405769162025418471491610.74%1094459.63%0906245236.95%1101332333.13%534156834.06%12558642764562900365
88287300100239644-4054153600000123308-1854133700100116336-220162394026410012470450306610321010102405769162025418471491610.74%1094459.63%0906245236.95%1101332333.13%534156834.06%12558642764562900365
9825320002433902431474122150022018613353413150002320411094119390686107623172118967379711801264134040297989347219392165525.46%1944079.38%31782337352.83%1502300649.97%696138850.14%2073150818805551010512
Total Saison Régulière73835030201217282926972782-85369176150058161413421344-2369174152079121513551438-83713269746927389105211188686717029585959898429937414302618763596816937252546218.30%248947181.08%30144422718653.12%130412711048.10%60831230849.42%172411224418472518689264364
Séries
2514000001319-62110000088030300000511-62132538004531159445257617347308534411.76%12558.33%07116443.29%6115140.40%399242.39%12083121386934
3624000001012-23120000068-2312000004404101727023430193636565017846751422015.00%37586.49%010421548.37%11621753.46%397850.00%13690145487737
4514000001014-43120000068-22020000046-22101929003340168544947181734810512846510.87%38392.11%010720851.44%10621649.07%387451.35%13288129467036
5231670000072591312930000041311011740000031283327212619801282616274023527022213685202177552991212.12%821482.93%242582051.83%44683253.61%16435745.94%570395539180299149
61385000003942-37520000020200633000001922-3163968107001214121497169174150440111484325461021.74%40782.50%031354957.01%24644555.28%11619958.29%3372392839216182
93300000018711220000001358110000005236182846003870179725057095266425240.00%3166.67%09313767.88%639764.95%365961.02%886855183518
Total Séries55312400000162153929191000000948014261214000006873-562162283445035360454193663766059841170548347712742503413.60%2123583.49%21113209353.18%1038195853.01%43285950.29%13879651275424714359