ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH
LHSRSM


Marlies
GP: 3 | W: 1 | L: 2
GF: 7 | GA: 17 | PP%: 33.33% | PK%: 77.78%
DG: Jeremie Pelland | Morale : 50 | Moyenne d'Équipe : 61
Prochain matchs #28 vs Crunch
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Anders BjorkXX100.006240886472747562606561636267640506302311,066,667$
2Austin WagnerX100.00874981637472836153606456636566050630221925,000$
3Chris StewartXX100.00794880628961635952605861568273050630311753,757$
4Mackenzie MacEachernX100.00824378617880716254556357627168050630251750,000$
5Andy AndreoffX100.00645383627879776156596058627774050630282750,000$
6Mitchell StephensX100.00594589617277736376606062646563050620221919,166$
7Nathan BastianX100.00725385618781745954586062596563050620212905,000$
8Michael McLeodX100.006449856278827663776158645963620506202121,363,333$
9Austin PoganskiX100.00624288607778805954605861596764050610231762,500$
10Beck MalenstynX100.00644888598381795652575861566362050610212773,333$
11Lance BoumaXXX100.00685778588286885752545659557867050610291650,000$
12Remi ElieX100.00644386618072695853575960626965050610241700,000$
13Andy WelinskiX100.00654388627884756130605963527367050630261750,000$
14Cameron GaunceX100.00614884627680736130655860537868050630291700,000$
15Nate ProsserX100.00634688608174715830575659538474050620332700,000$
16Rasmus SandinX100.00573989677177696630635864556063050620193894,167$
17Urho VaakanainenX100.006342876174797259306058655362630506102031,302,500$
Rayé
1Clark BishopX100.00624883607774725860575759606764050600231700,000$
2Hudson ElynuikX100.00705185558875775360525456536563050590211650,000$
3Marian StudenicX100.00533989587082835954555756596362050590202925,000$
4Nate SchnarrX100.00624984587980765763585356596163050590203894,167$
5Tanner KaspickX100.00614788557484825659535457556362050590212822,222$
6Blake SpeersX100.00534587566985845561535452566563050580221935,833$
7David PopeX100.006243885578757753515054565371660505802511,437,500$
8Dylan BlujusX100.00654983558278775430535356457166050590251650,000$
9Hunter DrewX100.00634977577974735530545356456362050580201650,000$
10Teemu KivihalmeX100.00524287585585845730565352456965050580241925,000$
11Vili SaarijarviX100.00533987575883845630545155456562050570221930,000$
MOYENNE D'ÉQUIPE100.0064468560767876594957575956686505061
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Joey Daccord100.0077636180767577767577766771050660
2Stuart Skinner100.0074737188737274737274736367050650
Rayé
MOYENNE D'ÉQUIPE100.007668668475747675747675656905066
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Rasmus SandinMarlies (TOR)D31340206811149.09%136421.5111211600007000.00%000001.2400000010
2Anders BjorkMarlies (TOR)LW/RW330300021185237.50%35317.7300006000000050.00%200011.1300000100
3Chris StewartMarlies (TOR)LW/RW3123-80012412538.33%65217.4912325000001040.00%500001.1400000000
4Nate ProsserMarlies (TOR)D3202-8403640350.00%64515.181012000000000.00%000000.8800000001
5Andy AndreoffMarlies (TOR)C30220002106340.00%05217.6200026000000055.41%7400000.7600000000
6Beck MalenstynMarlies (TOR)LW3011100000000.00%000.140000000000000.00%1000046.1500000000
7Cameron GaunceMarlies (TOR)D3011-3001242100.00%56923.030002500006000.00%000000.2900000000
8Mackenzie MacEachernMarlies (TOR)LW3011-36016710360.00%15819.510000000000000.00%100000.3400000000
9Andy WelinskiMarlies (TOR)D3000-3401055150.00%66622.320001500004000.00%000000.0000000000
10Mitchell StephensMarlies (TOR)C3000-900344220.00%45016.8400000000000050.00%1400000.0000000000
11Nathan BastianMarlies (TOR)RW3000020529260.00%05217.6200016000000060.00%500000.0000000000
12Michael McLeodMarlies (TOR)C3000-100001010.00%0113.7200000000000042.86%700000.0000000000
Stats d'équipe Total ou en Moyenne3671017-3418071617223369.72%4457816.0633621430000181052.29%10900010.5900000111
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Joey DaccordMarlies (TOR)31200.8635.611390013950200.000030000
2Stuart SkinnerMarlies (TOR)10000.9256.0040004530000.000003000
Stats d'équipe Total ou en Moyenne41200.8855.6718000171480200.000033000


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Anders BjorkMarlies (TOR)LW/RW231996-08-05No190 Lbs6 ft0NoNoNo1Pro & Farm1,066,667$0$0$NoLien / Lien NHL
Andy AndreoffMarlies (TOR)C281991-05-17No203 Lbs6 ft1NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien / Lien NHL
Andy WelinskiMarlies (TOR)D261993-04-27No201 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
Austin PoganskiMarlies (TOR)RW231996-02-16No198 Lbs6 ft1NoNoNo1Pro & Farm762,500$0$0$NoLien / Lien NHL
Austin WagnerMarlies (TOR)LW221997-06-23No185 Lbs6 ft1NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Beck MalenstynMarlies (TOR)LW211998-02-04No200 Lbs6 ft3NoNoNo2Pro & Farm773,333$0$0$No773,333$Lien / Lien NHL
Blake SpeersMarlies (TOR)C221997-01-02No185 Lbs5 ft11NoNoNo1Pro & Farm935,833$0$0$NoLien / Lien NHL
Cameron GaunceMarlies (TOR)D291990-03-19No194 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Chris StewartMarlies (TOR)LW/RW311987-10-30No242 Lbs6 ft2NoNoNo1Pro & Farm753,757$0$0$NoLien
Clark BishopMarlies (TOR)C231996-03-29No199 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
David PopeMarlies (TOR)LW251994-09-27No187 Lbs6 ft2NoNoNo1Pro & Farm1,437,500$0$0$NoLien / Lien NHL
Dylan BlujusMarlies (TOR)D251994-01-22No191 Lbs6 ft3NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Hudson ElynuikMarlies (TOR)C211997-10-12No194 Lbs6 ft5NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Hunter DrewMarlies (TOR)D201998-10-21No191 Lbs6 ft2NoNoNo1Pro & Farm650,000$0$0$NoLien
Joey DaccordMarlies (TOR)G231996-08-19No197 Lbs6 ft2NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Lance BoumaMarlies (TOR)C/LW/RW291990-03-25No208 Lbs6 ft2NoNoNo1Pro & Farm650,000$0$0$NoLien
Mackenzie MacEachernMarlies (TOR)LW251994-03-09No190 Lbs6 ft2NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
Marian StudenicMarlies (TOR)RW201998-10-28No164 Lbs6 ft1NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien / Lien NHL
Michael McLeodMarlies (TOR)C211998-02-03No188 Lbs6 ft2NoNoNo2Pro & Farm1,363,333$0$0$No1,363,333$Lien / Lien NHL
Mitchell StephensMarlies (TOR)C221997-02-05No193 Lbs5 ft11NoNoNo1Pro & Farm919,166$0$0$NoLien / Lien NHL
Nate ProsserMarlies (TOR)D331986-05-07No201 Lbs6 ft2NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien / Lien NHL
Nate SchnarrMarlies (TOR)C201999-02-25No180 Lbs6 ft3NoNoNo3Pro & Farm894,167$0$0$No894,167$894,167$Lien
Nathan BastianMarlies (TOR)RW211997-12-06No205 Lbs6 ft4NoNoNo2Pro & Farm905,000$0$0$No905,000$Lien / Lien NHL
Rasmus SandinMarlies (TOR)D192000-03-07No183 Lbs5 ft11NoNoNo3Pro & Farm894,167$0$0$No894,167$894,167$Lien / Lien NHL
Remi ElieMarlies (TOR)LW241995-04-16No215 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Stuart SkinnerMarlies (TOR)G201998-11-01No206 Lbs6 ft4NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien / Lien NHL
Tanner KaspickMarlies (TOR)C211998-01-28No200 Lbs6 ft0NoNoNo2Pro & Farm822,222$0$0$No822,222$Lien / Lien NHL
Teemu KivihalmeMarlies (TOR)D241995-06-17No161 Lbs5 ft1NoNoNo1Pro & Farm925,000$0$0$NoLien
Urho VaakanainenMarlies (TOR)D201999-01-01No185 Lbs6 ft1NoNoNo3Pro & Farm1,302,500$0$0$No1,302,500$1,302,500$Lien / Lien NHL
Vili SaarijarviMarlies (TOR)D221997-05-15No182 Lbs5 ft1NoNoNo1Pro & Farm930,000$0$0$NoLien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
3023.43194 Lbs6 ft11.47867,838$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Chris Stewart30122
2Anders BjorkAndy AndreoffNathan Bastian30122
3Mackenzie MacEachern25122
4Mackenzie MacEachernMitchell Stephens15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Cameron GaunceAndy Welinski30122
2Rasmus Sandin30122
3Nate ProsserMitchell Stephens25122
4Cameron GaunceAndy Welinski15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Chris Stewart60122
2Anders BjorkAndy AndreoffNathan Bastian40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Cameron GaunceAndy Welinski60122
2Rasmus Sandin40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
160122
2Chris StewartAnders Bjork40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Cameron GaunceAndy Welinski60122
2Rasmus Sandin40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
160122Cameron GaunceAndy Welinski60122
240122Rasmus Sandin40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
160122
2Chris StewartAnders Bjork40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Cameron GaunceAndy Welinski60122
2Rasmus Sandin40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Chris StewartCameron GaunceAndy Welinski
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Chris StewartCameron GaunceAndy Welinski
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Michael McLeod, Beck Malenstyn, Michael McLeod, Beck Malenstyn
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Nate Prosser, , Rasmus SandinNate Prosser, Rasmus Sandin
Tirs de Pénalité
, , Chris Stewart, Anders Bjork,
Gardien
#1 : Joey Daccord, #2 : Stuart Skinner


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Crunch31200000717-101010000016-521100000611-520.333712190024107326222501484518719333.33%9277.78%0258130.86%3613726.28%124427.27%604183223617
Total31200000717-101010000016-521100000611-520.333712190024107326222501484518719333.33%9277.78%0258130.86%3613726.28%124427.27%604183223617
_Since Last GM Reset31200000717-101010000016-521100000611-520.333712190024107326222501484518719333.33%9277.78%0258130.86%3613726.28%124427.27%604183223617
_Vs Conference31200000717-101010000016-521100000611-520.333712190024107326222501484518719333.33%9277.78%0258130.86%3613726.28%124427.27%604183223617
_Vs Division31200000717-101010000016-521100000611-520.333712190024107326222501484518719333.33%9277.78%0258130.86%3613726.28%124427.27%604183223617

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
32L2712197314845187100
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
3120000717
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
101000016
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
2110000611
Derniers 10 Matchs
WLOTWOTL SOWSOL
120000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
9333.33%9277.78%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
26222502410
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
258130.86%3613726.28%124427.27%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
604183223617


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2021-04-064Marlies6Crunch3WSommaire du Match
3 - 2021-04-0812Marlies0Crunch8LSommaire du Match
5 - 2021-04-1020Crunch6Marlies1LSommaire du Match
7 - 2021-04-1228Crunch-Marlies-
9 - 2021-04-1436Marlies-Crunch-
11 - 2021-04-1644Crunch-Marlies-
13 - 2021-04-1852Marlies-Crunch-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacitéPopularité de l'Équipe
40 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
0$ 2,603,515$ 1,580,951$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 0$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 8 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
282224905222247346-9941112303202125181-5641112602020122165-43442474406870289826982310774742774343354964104115822745620.44%4109676.59%21023241142.43%1069287337.21%539134740.01%1724115522126111016480
382116501122177424-247415320002291206-115416330110086218-132221773174940067575032458756890795274421129391116212843913.73%36710471.66%1834237535.12%1100325433.80%466133734.85%13709052640607933386
482126101035167428-261416290102388194-106416320001279234-1552416730947610605746922887537767306041601244106915224805812.08%41412270.53%1967244339.58%1094319134.28%527132739.71%13668732631654964400
582224901244243345-10241152001212134160-264172900032109185-764424338362611867874102929908981100871328091943519332084320.67%2015373.63%31371276549.58%1244270745.95%676140348.18%184713292151559970459
68234400023330427430412117000211611253641132300212143149-6683045018055614181796364011471213126636331497344120972184219.27%1724176.16%11554315049.33%1405321143.76%621134346.24%196514262007559979478
7823434022822932732041161801051147140741181601231146133136829352081321119867814348411551187110782312388350021572184018.35%2214778.73%11828318157.47%1639309852.91%737136953.83%2039145919255601014510
88250250104240223716541261101021200104964124140002120213369100402736113813184124897404813371320136845261975647420481884423.40%1904078.95%12052336960.91%1470270354.38%838138860.37%227616881690514987524
88250250104240223716541261101021200104964124140002120213369100402736113813184124897404813371320136845261975647420481884423.40%1904078.95%12052336960.91%1470270354.38%838138860.37%227616881690514987524
9823327045852882493941201302231144107374113140235414414221002885047922211995621731431051107298183310193146019722135324.88%1923880.21%21338303544.09%1258313440.14%632139045.47%2023145619675621016515
Total Saison Régulière73826837501614382725232813-2903691461740106191412901321-31369122201068191312331492-259570252344466969131810497846368128348921895019397483299918719580516980227141918.45%235758175.35%13130192609849.89%117492687443.72%58741229247.79%168901198518918514588714279
Séries
6404000001022-1220200000613-72020000049-5010152500532012634494302046326701417.14%13469.23%04213231.82%8117546.29%326648.48%7449117314721
7116500000393635320000023185633000001618-21239661050011141314361381501351342712570275361027.78%31777.42%023145051.33%20642248.82%9619349.74%2621812838414971
8624000002326-33210000012120303000001114-342341640097702057260721230704411617529.41%21957.14%010921650.46%8021637.04%6111254.46%13189156417335
931200000717-101010000016-521100000611-52712190024107326222501484518719333.33%9277.78%0258130.86%3613726.28%124427.27%604183223617
Total Séries249150000079101-221156000004249-71349000003752-151879134213002728231840270281275141009303158532761925.00%742270.27%040787946.30%40395042.42%20141548.43%528361641179306145