ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH

Marlies

GP: 51 | W: 30 | L: 15 | OTL: 6 | P: 66
GF: 190 | GA: 152 | PP%: 24.82% | PK%: 80.95%
DG: | Morale : 50 | Moyenne d'Équipe : 61
Prochain matchs #805 vs Comets
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Anders BjorkXX100.006240886472747562606561636267640506302311,066,667$
2Chris StewartXX100.00794880628961635952605861568273050630311753,757$
3Mackenzie MacEachernX100.00824378617880716254556357627168050630251750,000$
4Andy AndreoffX100.00645383627879776156596058627774050630282750,000$
5Mitchell StephensX100.00594589617277736376606062646563050620221919,166$
6Nathan BastianX100.00725385618781745954586062596563050620212905,000$
7Michael McLeodX100.006449856278827663776158645963620506202121,363,333$
8Beck MalenstynX100.00644888598381795652575861566362050610212773,333$
9Clark BishopX100.00624883607774725860575759606764050600231700,000$
10Andy WelinskiX100.00654388627884756130605963527367050630261750,000$
11Cameron GaunceX100.00614884627680736130655860537868050630291700,000$
12Nate ProsserX100.00634688608174715830575659538474050620332700,000$
13Rasmus SandinX100.00573989677177696630635864556063050620193894,167$
Rayé
1Austin WagnerX100.00874981637472836153606456636566050630221925,000$
2Austin PoganskiX100.00624288607778805954605861596764050610231762,500$
3Lance BoumaXXX100.00685778588286885752545659557867050610291650,000$
4Remi ElieX100.00644386618072695853575960626965050610241700,000$
5Hudson ElynuikX100.00705185558875775360525456536563050590211650,000$
6Marian StudenicX100.00533989587082835954555756596362050590202925,000$
7Nate SchnarrX100.00624984587980765763585356596163050590203894,167$
8Tanner KaspickX100.00614788557484825659535457556362050590212822,222$
9Blake SpeersX100.00534587566985845561535452566563050580221935,833$
10David PopeX100.006243885578757753515054565371660505802511,437,500$
11Urho VaakanainenX100.006342876174797259306058655362630506102031,302,500$
12Dylan BlujusX100.00654983558278775430535356457166050590251650,000$
13Hunter DrewX100.00634977577974735530545356456362050580201650,000$
14Teemu KivihalmeX100.00524287585585845730565352456965050580241925,000$
15Vili SaarijarviX100.00533987575883845630545155456562050570221930,000$
MOYENNE D'ÉQUIPE100.0064468560767876594957575956686505061
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Joey Daccord100.0077636180767577767577766771050660
2Stuart Skinner100.0074737188737274737274736367050650
Rayé
MOYENNE D'ÉQUIPE100.007668668475747675747675656905066
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Anders BjorkMarlies (TOR)LW/RW5121426322403297231431489.09%1693818.40281030990001232045.78%8300001.3403000232
2Rasmus SandinMarlies (TOR)D5194857183601449913349966.77%114108821.34571262107000084110.00%000001.0500000307
3Andy AndreoffMarlies (TOR)C5119284722175561091554712012.26%990817.8137102699000004250.73%130900001.0300100041
4Alexander TrueMaple LeafsC42212445413549112225551709.33%4590621.596915369711241133149.95%98500010.9939100422
5Nathan BastianMarlies (TOR)RW5126194522275123571886412913.83%1190817.815383199000002251.61%6200000.9900001244
6Cameron GaunceMarlies (TOR)D51539441142087909146625.49%90123324.19281046113022090300.00%000000.7100000022
7Andy WelinskiMarlies (TOR)D51122941112601058113443888.96%89124424.4041115501131121100220.00%000100.6600000221
8Chris StewartMarlies (TOR)LW/RW51152338-225516089183591628.20%2194518.535914291160000222049.11%11200000.8037010141
9Mitchell StephensMarlies (TOR)C51121931-1160657692216713.04%5192118.0800000000001357.04%27700000.6722000212
10Mackenzie MacEachernMarlies (TOR)LW51131629014013965175441067.43%498219.2600000000001054.05%7400000.5900000211
11Oliver WahlstromMaple LeafsC/RW491410245001179117307311.97%1361612.5800000000001145.22%77400000.7800000101
12Austin WagnerMarlies (TOR)LW498132162810884610136737.92%965713.42000000001430042.00%5000000.6413200021
13Nate ProsserMarlies (TOR)D5131518-228097394219327.14%4275114.740001400004000.00%000000.4800000011
14Michael McLeodMarlies (TOR)C51167-42012304513302.22%51823.5701118000000063.33%15000000.7700000000
15Libor HajekMaple LeafsD623507510773728.57%612220.4121351100008100.00%000000.8200100101
16Michael Dal ColleMaple LeafsLW/RW12021200030766.67%02424.8210120000000033.33%600001.6100000010
17Beck MalenstynMarlies (TOR)LW511012003270114.29%2200.4000011000081050.00%800000.9800000001
Stats d'équipe Total ou en Moyenne7591843345181152873511811078192957213719.54%5271245316.413564993208732467499241250.15%389000110.83924511202728
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Joey DaccordMarlies (TOR)51301560.9212.8131164214618470120.75737510921
Stats d'équipe Total ou en Moyenne51301560.9212.8131164214618470120.75737510921


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Anders BjorkMarlies (TOR)LW/RW231996-08-05No190 Lbs6 ft0NoNoNo1Pro & Farm1,066,667$0$0$NoLien / Lien NHL
Andy AndreoffMarlies (TOR)C281991-05-17No203 Lbs6 ft1NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien / Lien NHL
Andy WelinskiMarlies (TOR)D261993-04-27No201 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
Austin PoganskiMarlies (TOR)RW231996-02-16No198 Lbs6 ft1NoNoNo1Pro & Farm762,500$0$0$NoLien / Lien NHL
Austin WagnerMarlies (TOR)LW221997-06-23No185 Lbs6 ft1NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Beck MalenstynMarlies (TOR)LW211998-02-04No200 Lbs6 ft3NoNoNo2Pro & Farm773,333$0$0$No773,333$Lien / Lien NHL
Blake SpeersMarlies (TOR)C221997-01-02No185 Lbs5 ft11NoNoNo1Pro & Farm935,833$0$0$NoLien / Lien NHL
Cameron GaunceMarlies (TOR)D291990-03-19No194 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Chris StewartMarlies (TOR)LW/RW311987-10-30No242 Lbs6 ft2NoNoNo1Pro & Farm753,757$0$0$NoLien
Clark BishopMarlies (TOR)C231996-03-29No199 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
David PopeMarlies (TOR)LW251994-09-27No187 Lbs6 ft2NoNoNo1Pro & Farm1,437,500$0$0$NoLien / Lien NHL
Dylan BlujusMarlies (TOR)D251994-01-22No191 Lbs6 ft3NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Hudson ElynuikMarlies (TOR)C211997-10-12No194 Lbs6 ft5NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Hunter DrewMarlies (TOR)D201998-10-21No191 Lbs6 ft2NoNoNo1Pro & Farm650,000$0$0$NoLien
Joey DaccordMarlies (TOR)G231996-08-19No197 Lbs6 ft2NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Lance BoumaMarlies (TOR)C/LW/RW291990-03-25No208 Lbs6 ft2NoNoNo1Pro & Farm650,000$0$0$NoLien
Mackenzie MacEachernMarlies (TOR)LW251994-03-09No190 Lbs6 ft2NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
Marian StudenicMarlies (TOR)RW201998-10-28No164 Lbs6 ft1NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien / Lien NHL
Michael McLeodMarlies (TOR)C211998-02-03No188 Lbs6 ft2NoNoNo2Pro & Farm1,363,333$0$0$No1,363,333$Lien / Lien NHL
Mitchell StephensMarlies (TOR)C221997-02-05No193 Lbs5 ft11NoNoNo1Pro & Farm919,166$0$0$NoLien / Lien NHL
Nate ProsserMarlies (TOR)D331986-05-07No201 Lbs6 ft2NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien / Lien NHL
Nate SchnarrMarlies (TOR)C201999-02-25No180 Lbs6 ft3NoNoNo3Pro & Farm894,167$0$0$No894,167$894,167$Lien
Nathan BastianMarlies (TOR)RW211997-12-06No205 Lbs6 ft4NoNoNo2Pro & Farm905,000$0$0$No905,000$Lien / Lien NHL
Rasmus SandinMarlies (TOR)D192000-03-07No183 Lbs5 ft11NoNoNo3Pro & Farm894,167$0$0$No894,167$894,167$Lien / Lien NHL
Remi ElieMarlies (TOR)LW241995-04-16No215 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Stuart SkinnerMarlies (TOR)G201998-11-01No206 Lbs6 ft4NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien / Lien NHL
Tanner KaspickMarlies (TOR)C211998-01-28No200 Lbs6 ft0NoNoNo2Pro & Farm822,222$0$0$No822,222$Lien / Lien NHL
Teemu KivihalmeMarlies (TOR)D241995-06-17No161 Lbs5 ft1NoNoNo1Pro & Farm925,000$0$0$NoLien
Urho VaakanainenMarlies (TOR)D201999-01-01No185 Lbs6 ft1NoNoNo3Pro & Farm1,302,500$0$0$No1,302,500$1,302,500$Lien / Lien NHL
Vili SaarijarviMarlies (TOR)D221997-05-15No182 Lbs5 ft1NoNoNo1Pro & Farm930,000$0$0$NoLien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
3023.43194 Lbs6 ft11.47867,838$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Chris Stewart30122
2Anders BjorkAndy AndreoffNathan Bastian30122
3Mackenzie MacEachern25122
4Mackenzie MacEachernMitchell Stephens15122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Cameron GaunceAndy Welinski30122
2Rasmus Sandin30122
3Nate ProsserMitchell Stephens25122
4Cameron GaunceAndy Welinski15122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Chris Stewart60122
2Anders BjorkAndy AndreoffNathan Bastian40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Cameron GaunceAndy Welinski60122
2Rasmus Sandin40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
160122
2Chris StewartAnders Bjork40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Cameron GaunceAndy Welinski60122
2Rasmus Sandin40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
160122Cameron GaunceAndy Welinski60122
240122Rasmus Sandin40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
160122
2Chris StewartAnders Bjork40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Cameron GaunceAndy Welinski60122
2Rasmus Sandin40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Chris StewartCameron GaunceAndy Welinski
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Chris StewartCameron GaunceAndy Welinski
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Michael McLeod, Beck Malenstyn, Michael McLeod, Beck Malenstyn
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Nate Prosser, , Rasmus SandinNate Prosser, Rasmus Sandin
Tirs de Pénalité
, , Chris Stewart, Anders Bjork,
Gardien
#1 : Joey Daccord, #2 : Stuart Skinner


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals22000000835110000002111100000062441.0008152300766144128566165959566691710436233.33%50100.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
2Americans20001100770000000000002000110077030.7507132000766144126466165959566771816567114.29%8362.50%0867190645.49%806189242.60%43484851.18%12639021214356642326
3Barracuda11000000422000000000001100000042221.000481200766144123466165959566459218400.00%10100.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
4Bears21100000954110000007161010000024-220.50091726107661441296661659595667015646300.00%30100.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
5Bruins320000101138210000109361100000020261.000112031017661441210066165959566803031789222.22%6266.67%0867190645.49%806189242.60%43484851.18%12639021214356642326
6Checkers1000000156-1000000000001000000156-110.50058130076614412396616595956639136234125.00%3166.67%0867190645.49%806189242.60%43484851.18%12639021214356642326
7Crunch11000000211110000002110000000000021.0002460076614412306616595956636108193133.33%40100.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
8Devils11000000532110000005320000000000021.000561100766144123366165959566281222511100.00%10100.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
9Eagles2000010168-21000010034-11000000134-120.50061218007661441210766165959566843019457228.57%7271.43%0867190645.49%806189242.60%43484851.18%12639021214356642326
10Griffins321000001394110000007252110000067-140.66713243700766144129366165959566922716628112.50%8537.50%0867190645.49%806189242.60%43484851.18%12639021214356642326
11Heat10001000321100010003210000000000021.000369007661441260661659595664211032300.00%000.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
12IceHogs1000000134-11000000134-10000000000010.500369007661441238661659595665415638100.00%3166.67%0867190645.49%806189242.60%43484851.18%12639021214356642326
13Monsters4400000013673300000010551100000031281.00013233600766144121216616595956610138187410330.00%9188.89%0867190645.49%806189242.60%43484851.18%12639021214356642326
14Moose220000001751211000000100101100000075241.000173249017661441212466165959566611426333100.00%10100.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
15Penguins2200000015782200000015780000000000041.000152641007661441210866165959566782017406233.33%5180.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
16Phantoms30300000813-51010000023-120200000610-400.000814221076614412135661659595661192920689111.11%9277.78%0867190645.49%806189242.60%43484851.18%12639021214356642326
17Rampage1010000013-2000000000001010000013-200.0001230076614412246616595956657181229000.00%60100.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
18Reign1010000034-11010000034-10000000000000.0003580076614412366616595956632128202150.00%30100.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
19Roadrunners21000010642110000002111000001043141.0006915007661441271661659595667125855600.00%40100.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
20Rocket3020001069-31010000013-22010001056-120.3336814007661441290661659595661003113551119.09%30100.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
21Senators30200001913-42020000069-31000000134-110.1679152400766144121096616595956612628126810110.00%50100.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
22Sound Tigers11000000633000000000001100000063321.000611170076614412376616595956638144182150.00%20100.00%1867190645.49%806189242.60%43484851.18%12639021214356642326
23Stars10000010431100000104310000000000021.00046100076614412406616595956644134233266.67%20100.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
Total51211503264190152382613702121100643625880114390882660.6471903355252276614412194666165959566184953930111961413524.82%1262480.95%2867190645.49%806189242.60%43484851.18%12639021214356642326
24Wild31100010131211010000023-121000010119240.66713213400766144121116616595956611439167710550.00%8187.50%0867190645.49%806189242.60%43484851.18%12639021214356642326
25Wolf Pack402010101214-22010100045-12010001089-140.50012223400766144121296616595956615144359210440.00%15473.33%1867190645.49%806189242.60%43484851.18%12639021214356642326
26Wolves1010000013-2000000000001010000013-200.000123007661441232661659595664171029300.00%5180.00%0867190645.49%806189242.60%43484851.18%12639021214356642326
_Since Last GM Reset51211503264190152382613702121100643625880114390882660.6471903355252276614412194666165959566184953930111961413524.82%1262480.95%2867190645.49%806189242.60%43484851.18%12639021214356642326
_Vs Conference26810021329584111365010105135161325011224449-5290.55895164259217661441297066165959566942264170588751621.33%641379.69%2867190645.49%806189242.60%43484851.18%12639021214356642326
_Vs Division152401111484267230000025187801011112324-1100.33348841320176614412486661659595665111449633848714.58%341070.59%0867190645.49%806189242.60%43484851.18%12639021214356642326

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
5166SOL119033552519461849539301119622
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
5121153264190152
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
26137212110064
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
258811439088
Derniers 10 Matchs
WLOTWOTL SOWSOL
450001
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1413524.82%1262480.95%2
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
6616595956676614412
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
867190645.49%806189242.60%43484851.18%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
12639021214356642326


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2020-10-0716Devils3Marlies5WSommaire du Match
5 - 2020-10-0933Marlies6Sound Tigers3WSommaire du Match
7 - 2020-10-1147Bruins1Marlies6WSommaire du Match
10 - 2020-10-1467Wolf Pack3Marlies1LSommaire du Match
12 - 2020-10-1680Marlies3Wild2WSommaire du Match
14 - 2020-10-1896Monsters1Marlies3WSommaire du Match
15 - 2020-10-19106Marlies4Phantoms6LSommaire du Match
18 - 2020-10-22126Senators4Marlies3LSommaire du Match
20 - 2020-10-24141Marlies3Griffins5LSommaire du Match
22 - 2020-10-26158Monsters2Marlies3WSommaire du Match
23 - 2020-10-27166Marlies2Americans1WXSommaire du Match
26 - 2020-10-30187Penguins5Marlies8WSommaire du Match
28 - 2020-11-01201Marlies6Wolf Pack5WXXSommaire du Match
30 - 2020-11-03214Marlies4Rocket3WXXSommaire du Match
31 - 2020-11-04224Marlies3Monsters1WSommaire du Match
33 - 2020-11-06240Wolf Pack2Marlies3WXSommaire du Match
36 - 2020-11-09256Marlies5Americans6LXSommaire du Match
38 - 2020-11-11268Roadrunners1Marlies2WSommaire du Match
40 - 2020-11-13288Marlies1Rampage3LSommaire du Match
42 - 2020-11-15300Moose0Marlies10WSommaire du Match
44 - 2020-11-17318Marlies4Roadrunners3WXXSommaire du Match
46 - 2020-11-19327Bruins2Marlies3WXXSommaire du Match
48 - 2020-11-21344Marlies3Eagles4LXXSommaire du Match
49 - 2020-11-22359Penguins2Marlies7WSommaire du Match
52 - 2020-11-25380Crunch1Marlies2WSommaire du Match
54 - 2020-11-27394Marlies3Senators4LXXSommaire du Match
56 - 2020-11-29406Marlies2Bears4LSommaire du Match
57 - 2020-11-30418Marlies4Barracuda2WSommaire du Match
59 - 2020-12-02430Phantoms3Marlies2LSommaire du Match
62 - 2020-12-05452Bears1Marlies7WSommaire du Match
65 - 2020-12-08475Marlies8Wild7WXXSommaire du Match
67 - 2020-12-10485Admirals1Marlies2WSommaire du Match
69 - 2020-12-12500Marlies7Moose5WSommaire du Match
71 - 2020-12-14513Reign4Marlies3LSommaire du Match
73 - 2020-12-16530Marlies2Bruins0WSommaire du Match
75 - 2020-12-18544Heat2Marlies3WXSommaire du Match
78 - 2020-12-21567Wild3Marlies2LSommaire du Match
80 - 2020-12-23584Marlies5Checkers6LXXSommaire du Match
83 - 2020-12-26601Marlies1Wolves3LSommaire du Match
84 - 2020-12-27610Eagles4Marlies3LXSommaire du Match
87 - 2020-12-30630Stars3Marlies4WXXSommaire du Match
89 - 2021-01-01648Marlies2Wolf Pack4LSommaire du Match
91 - 2021-01-03662Monsters2Marlies4WSommaire du Match
93 - 2021-01-05679Marlies1Rocket3LSommaire du Match
95 - 2021-01-07693Rocket3Marlies1LSommaire du Match
99 - 2021-01-11718Senators5Marlies3LSommaire du Match
101 - 2021-01-13736Marlies3Griffins2WSommaire du Match
103 - 2021-01-15748Marlies6Admirals2WSommaire du Match
104 - 2021-01-16758Griffins2Marlies7WSommaire du Match
107 - 2021-01-19778Marlies2Phantoms4LSommaire du Match
109 - 2021-01-21787IceHogs4Marlies3LXXSommaire du Match
111 - 2021-01-23805Marlies-Comets-
113 - 2021-01-25815Marlies-Devils-
114 - 2021-01-26826Comets-Marlies-
117 - 2021-01-29842Marlies-Thunderbirds-
119 - 2021-01-31853Marlies-Monsters-
120 - 2021-02-01861Devils-Marlies-
123 - 2021-02-04886Sound Tigers-Marlies-
126 - 2021-02-07904Marlies-Reign-
128 - 2021-02-09918Wolves-Marlies-
131 - 2021-02-12940Barracuda-Marlies-
134 - 2021-02-15961Marlies-Penguins-
135 - 2021-02-16971Checkers-Marlies-
138 - 2021-02-19993Marlies-Bears-
139 - 2021-02-201001Marlies-Sound Tigers-
141 - 2021-02-221012Americans-Marlies-
143 - 2021-02-241030Marlies-Stars-
145 - 2021-02-261042Checkers-Marlies-
148 - 2021-03-011060Marlies-Condors-
150 - 2021-03-031074Rampage-Marlies-
152 - 2021-03-051091Marlies-Crunch-
154 - 2021-03-071104Condors-Marlies-
156 - 2021-03-091122Marlies-Crunch-
157 - 2021-03-101134Gulls-Marlies-
160 - 2021-03-131156Wolf Pack-Marlies-
162 - 2021-03-151165Marlies-IceHogs-
166 - 2021-03-191191Thunderbirds-Marlies-
167 - 2021-03-201196Marlies-Sound Tigers-
171 - 2021-03-241218Thunderbirds-Marlies-
174 - 2021-03-271235Marlies-Heat-
177 - 2021-03-301252Wolf Pack-Marlies-
180 - 2021-04-021267Marlies-Gulls-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
15 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,706,698$ 2,603,515$ 1,580,951$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 1,706,698$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 72 14,305$ 1,029,960$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
282224905222247346-9941112303202125181-5641112602020122165-43442474406870289826982310774742774343354964104115822745620.44%4109676.59%21023241142.43%1069287337.21%539134740.01%1724115522126111016480
382116501122177424-247415320002291206-115416330110086218-132221773174940067575032458756890795274421129391116212843913.73%36710471.66%1834237535.12%1100325433.80%466133734.85%13709052640607933386
482126101035167428-261416290102388194-106416320001279234-1552416730947610605746922887537767306041601244106915224805812.08%41412270.53%1967244339.58%1094319134.28%527132739.71%13668732631654964400
582224901244243345-10241152001212134160-264172900032109185-764424338362611867874102929908981100871328091943519332084320.67%2015373.63%31371276549.58%1244270745.95%676140348.18%184713292151559970459
68234400023330427430412117000211611253641132300212143149-6683045018055614181796364011471213126636331497344120972184219.27%1724176.16%11554315049.33%1405321143.76%621134346.24%196514262007559979478
7823434022822932732041161801051147140741181601231146133136829352081321119867814348411551187110782312388350021572184018.35%2214778.73%11828318157.47%1639309852.91%737136953.83%2039145919255601014510
88250250104240223716541261101021200104964124140002120213369100402736113813184124897404813371320136845261975647420481884423.40%1904078.95%12052336960.91%1470270354.38%838138860.37%227616881690514987524
88250250104240223716541261101021200104964124140002120213369100402736113813184124897404813371320136845261975647420481884423.40%1904078.95%12052336960.91%1470270354.38%838138860.37%227616881690514987524
951211503264190152382613702121100643625880114390882661903355252276614412194666165959566184953930111961413524.82%1262480.95%2867190645.49%806189242.60%43484851.18%12639021214356642326
Total Saison Régulière70725636301511362624252716-2913541391680105181412461278-32353117195056181211791438-259536242542776702131810067506187627151882890889011466287398327564616204219940118.24%229156775.25%13125482496950.25%112972563244.07%56761175048.31%161301143118165493984974090
Séries
6404000001022-1220200000613-72020000049-5010152500532012634494302046326701417.14%13469.23%04213231.82%8117546.29%326648.48%7449117314721
7116500000393635320000023185633000001618-21239661050011141314361381501351342712570275361027.78%31777.42%023145051.33%20642248.82%9619349.74%2621812838414971
8624000002326-33210000012120303000001114-342341640097702057260721230704411617529.41%21957.14%010921650.46%8021637.04%6111254.46%13189156417335
Total Séries21813000007284-121055000004143-21138000003141-10167212219400252422176724425925014861258140461671623.88%652069.23%038279847.87%36781345.14%18937150.94%467320558156270128