ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH

Comets

GP: 81 | W: 11 | L: 69 | OTL: 1 | P: 23
GF: 224 | GA: 637 | PP%: 14.78% | PK%: 66.07%
DG: Sacha Verville | Morale : 50 | Moyenne d'Équipe : 61
Prochain matchs #1268 vs Wolves
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Peter CehlarikX100.00583691658182686360616264596765050630
2Sebastian RepoX100.00713885598692895853565759586563050620
3Matthew FordX100.00653983577992885658555457558579050610
4Anton BlidhX100.00733886567586735553565465526764047600
5Ryan WhiteX100.00714467557478725453525458547971050590
6Garret RossX100.00584566597178725854525556547367050590
7Nicholas CaamanoX100.00644177557994935456535356546163050590
8Scott SabourinX100.00684370548485795354525356547367050590
9Kole Lind (R)X100.00573690567390845559555254536163050580
10Stelio Mattheos (R)X100.00623593557771685463525457566062050580
Rayé
MOYENNE D'ÉQUIPE100.0065408157788579565654555855696605060
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Ilya Samsonov100.0076777583757476757476756367050650
2Jeremy Smith100.0074787670737274737274737884050650
Rayé
1Matthew O'Connor100.0071646293706971706971707377050640
2Jake Oettinger100.0072656393717072717072716165050630
MOYENNE D'ÉQUIPE100.007371698572717372717372697305064
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Scott SabourinComets (VAN)RW81494897-2137152491805171503289.48%173132316.3410134000005153.54%9900041.4700111353
2Anton BlidhComets (VAN)LW32302353146050832838916310.60%5951816.1900020101113061.11%3600042.0500000441
3Dalton ProutCanucksD39635412545585428235737.32%4670818.161342350000045000.00%000001.1600100020
4Daniel BrickleyCanucksD48102838564801132672213713.89%53113523.6613418940112105100.00%000100.6700000111
Stats d'équipe Total ou en Moyenne2009513422974136204973319542956019.96%331368518.433694615111231529155.56%13500181.24002118125
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Stats d'équipe Total ou en Moyenne0.0000.0000.000


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Anton BlidhComets (VAN)LW231995-03-14No201 Lbs6 ft0NoNoNo3Pro & Farm650,000$0$0$No700,000$700,000$Lien / Lien NHL
Garret RossComets (VAN)LW261992-05-26No176 Lbs6 ft0NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Ilya SamsonovComets (VAN)G211997-02-22No200 Lbs6 ft3NoNoNo3Pro & Farm1,475,000$0$0$No1,475,000$1,475,000$Lien / Lien NHL
Jake OettingerComets (VAN)G191998-12-18No220 Lbs6 ft5NoNoNo4Pro & Farm1,387,500$0$0$No1,387,500$1,387,500$1,387,500$Lien / Lien NHL
Jeremy SmithComets (VAN)G291989-04-13No177 Lbs6 ft0NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Kole LindComets (VAN)RW191998-10-16Yes178 Lbs6 ft1NoNoNo3Pro & Farm1,125,000$0$0$No1,125,000$1,125,000$Lien / Lien NHL
Matthew FordComets (VAN)RW341984-10-09No207 Lbs6 ft1NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Matthew O'ConnorComets (VAN)G261992-02-14No205 Lbs6 ft6NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Nicholas CaamanoComets (VAN)RW201998-09-07No195 Lbs6 ft2NoNoNo3Pro & Farm738,333$0$0$No738,333$738,333$Lien / Lien NHL
Peter CehlarikComets (VAN)LW231995-08-02No202 Lbs6 ft2NoNoNo1Pro & Farm925,000$0$0$NoLien / Lien NHL
Ryan WhiteComets (VAN)RW301988-03-17No200 Lbs6 ft0NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Scott SabourinComets (VAN)RW261992-07-30No203 Lbs6 ft3NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Sebastian RepoComets (VAN)RW221996-06-23No211 Lbs6 ft3NoNoNo2Pro & Farm740,000$0$0$No740,000$Lien / Lien NHL
Stelio MattheosComets (VAN)C191999-06-14Yes196 Lbs6 ft1NoNoNo4Pro & Farm925,000$0$0$No925,000$925,000$925,000$Lien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1424.07198 Lbs6 ft22.07847,560$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
130122
2Scott Sabourin30122
325122
415122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
130122
230122
325122
415122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
160122
2Scott Sabourin40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
160122
240122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
16012260122
24012240122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
160122
240122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Scott Sabourin, , Scott Sabourin,
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, , ,
Tirs de Pénalité
, , , , Scott Sabourin
Gardien
#1 : , #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals30300000523-1820200000214-121010000039-600.0005813009273590939709539679201648714125.00%4250.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
2Americans20200000318-151010000008-810100000310-700.00036900927359058970953967916240458400.00%220.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
3Barracuda50500000942-3320200000418-1430300000524-1900.000917260092735901279709539679387109231031218.33%7271.43%0677219330.87%945335628.16%418156126.78%11427742853547869337
4Bears2110000010100110000007611010000034-120.5001018280092735907097095396791404312405120.00%6183.33%0677219330.87%945335628.16%418156126.78%11427742853547869337
5Bruins20200000217-1510100000010-101010000027-500.0002460092735903597095396791473416414125.00%8275.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
6Checkers20200000318-151010000019-81010000029-700.00035800927359059970953967916548242000.00%110.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
7Condors4310000034231122000000211011211000001313060.7503467101109273590345970953967923380101595240.00%4325.00%1677219330.87%945335628.16%418156126.78%11427742853547869337
8Crunch20200000220-1810100000011-111010000029-700.00024600927359044970953967916845452000.00%20100.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
9Devils2200000017125110000008621100000096341.000172845009273590158970953967915139273100.00%10100.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
10Eagles30300000425-2120200000114-1310100000311-800.000471100927359074970953967918367451400.00%3166.67%0677219330.87%945335628.16%418156126.78%11427742853547869337
11Griffins20200000114-131010000005-51010000019-800.00011200927359059970953967912347640100.00%4175.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
12Gulls40400000839-3120200000519-1420200000320-1700.00081422009273590949709539679332821794800.00%6183.33%0677219330.87%945335628.16%418156126.78%11427742853547869337
13Heat4310000024195220000001284211000001211160.75024456900927359027197095396792787591273133.33%2150.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
14IceHogs30300000331-2820200000218-1610100000113-1200.00035800927359074970953967925959856500.00%4325.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
15Marlies20200000617-111010000027-510100000410-600.0006111700927359042970953967915841444300.00%220.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
16Monsters20200000217-151010000009-91010000028-600.00024600927359033970953967914632436100.00%2150.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
17Moose312000001419-51010000057-221100000912-320.3331426400092735901689709539679197676915120.00%4175.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
18Penguins20200000613-71010000047-31010000026-400.0006111700927359082970953967915660855100.00%30100.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
19Phantoms20200000520-151010000029-710100000311-800.0005914009273590519709539679146304364250.00%10100.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
20Rampage30300000124-2320200000116-151010000008-800.0001230092735906497095396792258212655120.00%50100.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
21Reign40400000728-2120200000212-1020200000516-1100.000711180092735908397095396792677512529111.11%6266.67%0677219330.87%945335628.16%418156126.78%11427742853547869337
22Roadrunners40400000633-2720200000416-1220200000217-1500.000612180092735908597095396792857910774250.00%6183.33%0677219330.87%945335628.16%418156126.78%11427742853547869337
23Rocket20200000514-91010000038-51010000026-400.000591400927359055970953967915946642400.00%30100.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
24Senators20200000813-51010000056-11010000037-400.00081220009273590151970953967917871656000.00%3166.67%0677219330.87%945335628.16%418156126.78%11427742853547869337
25Sound Tigers20200000317-141010000026-410100000111-1000.000369009273590409709539679148611838100.00%9633.33%0677219330.87%945335628.16%418156126.78%11427742853547869337
26Stars302000011826-81010000068-2201000011218-610.1671833510092735901979709539679207596957114.29%3166.67%0677219330.87%945335628.16%418156126.78%11427742853547869337
27Thunderbirds21100000510-5110000004311010000017-620.5005914009273590739709539679127402484125.00%110.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
Total81116900001224637-4134073300000109297-1884143600001115340-225230.142224408632109273590289697095396795959175724519061151714.78%1123866.07%1677219330.87%945335628.16%418156126.78%11427742853547869337
29Wild30300000428-241010000018-720200000320-1700.0004711009273590669709539679263608514125.00%30100.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
30Wolf Pack20200000322-1910100000212-1010100000110-900.00036900927359057970953967914958650200.00%3166.67%0677219330.87%945335628.16%418156126.78%11427742853547869337
31Wolves30300000625-191010000037-420200000318-1500.0006111700927359088970953967921964863500.00%4175.00%0677219330.87%945335628.16%418156126.78%11427742853547869337
_Since Last GM Reset81116900001224637-4134073300000109297-1884143600001115340-225230.142224408632109273590289697095396795959175724519061151714.78%1123866.07%1677219330.87%945335628.16%418156126.78%11427742853547869337
_Vs Conference284240000078221-143143110000040108-68141130000038113-7580.14378138216009273590975970953967921546569467533515.15%451762.22%0677219330.87%945335628.16%418156126.78%11427742853547869337
_Vs Division162100000032123-91815000001458-44815000001865-4740.125325688009273590517970953967912223644838120210.00%25964.00%0677219330.87%945335628.16%418156126.78%11427742853547869337

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
8123L1224408632289659591757245190610
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8111690001224637
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
407330000109297
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
414360001115340
Derniers 10 Matchs
WLOTWOTL SOWSOL
180001
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1151714.78%1123866.07%1
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
97095396799273590
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
677219330.87%945335628.16%418156126.78%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
11427742853547869337


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2019-10-023Comets8Condors6WSommaire du Match
4 - 2019-10-0529Comets8Heat5WSommaire du Match
8 - 2019-10-0946Reign4Comets2LSommaire du Match
11 - 2019-10-1273Phantoms9Comets2LSommaire du Match
14 - 2019-10-1589Griffins5Comets0LSommaire du Match
16 - 2019-10-17101Comets0Rampage8LSommaire du Match
18 - 2019-10-19113Comets9Devils6WSommaire du Match
19 - 2019-10-20124Comets1Wolf Pack10LSommaire du Match
21 - 2019-10-22137Comets1Griffins9LSommaire du Match
24 - 2019-10-25160Bears6Comets7WSommaire du Match
27 - 2019-10-28178Thunderbirds3Comets4WSommaire du Match
29 - 2019-10-30193Comets2Reign7LSommaire du Match
31 - 2019-11-01202Comets1Gulls9LSommaire du Match
32 - 2019-11-02216Comets2Barracuda5LSommaire du Match
35 - 2019-11-05232Rampage7Comets0LSommaire du Match
37 - 2019-11-07243Comets1IceHogs13LSommaire du Match
38 - 2019-11-08250Comets6Moose4WSommaire du Match
40 - 2019-11-10265Devils6Comets8WSommaire du Match
42 - 2019-11-12277Admirals9Comets1LSommaire du Match
44 - 2019-11-14291Stars8Comets6LSommaire du Match
46 - 2019-11-16311Eagles5Comets0LSommaire du Match
49 - 2019-11-19327Comets6Stars11LSommaire du Match
51 - 2019-11-21339Comets3Admirals9LSommaire du Match
53 - 2019-11-23348Comets3Bears4LSommaire du Match
55 - 2019-11-25367Comets3Phantoms11LSommaire du Match
57 - 2019-11-27382Comets2Penguins6LSommaire du Match
60 - 2019-11-30415Comets5Condors7LSommaire du Match
61 - 2019-12-01418Condors5Comets11WSommaire du Match
63 - 2019-12-03432Senators6Comets5LSommaire du Match
67 - 2019-12-07453Americans8Comets0LSommaire du Match
70 - 2019-12-10481Marlies7Comets2LSommaire du Match
72 - 2019-12-12496Checkers9Comets1LSommaire du Match
74 - 2019-12-14514Comets1Barracuda10LSommaire du Match
75 - 2019-12-15518Comets1Wolves10LSommaire du Match
77 - 2019-12-17532Rocket8Comets3LSommaire du Match
79 - 2019-12-19547Wolves7Comets3LSommaire du Match
81 - 2019-12-21563Penguins7Comets4LSommaire du Match
83 - 2019-12-23579Condors5Comets10WSommaire du Match
88 - 2019-12-28599Reign8Comets0LSommaire du Match
89 - 2019-12-29611Comets4Heat6LSommaire du Match
93 - 2020-01-02637IceHogs10Comets0LSommaire du Match
95 - 2020-01-04651Wolf Pack12Comets2LSommaire du Match
98 - 2020-01-07663Comets2Crunch9LSommaire du Match
100 - 2020-01-09681Comets1Thunderbirds7LSommaire du Match
102 - 2020-01-11692Comets3Americans10LSommaire du Match
103 - 2020-01-12704Comets3Wild9LSommaire du Match
105 - 2020-01-14721Comets3Moose8LSommaire du Match
107 - 2020-01-16739Roadrunners9Comets4LSommaire du Match
109 - 2020-01-18754Barracuda8Comets0LSommaire du Match
118 - 2020-01-27772Rampage9Comets1LSommaire du Match
120 - 2020-01-29781Comets2Barracuda9LSommaire du Match
123 - 2020-02-01793Comets1Sound Tigers11LSommaire du Match
124 - 2020-02-02808Comets2Checkers9LSommaire du Match
126 - 2020-02-04812Comets2Bruins7LSommaire du Match
128 - 2020-02-06835Comets0Wild11LSommaire du Match
130 - 2020-02-08853Heat3Comets6WSommaire du Match
132 - 2020-02-10864Admirals5Comets1LSommaire du Match
134 - 2020-02-12879IceHogs8Comets2LSommaire du Match
138 - 2020-02-16909Gulls11Comets2LSommaire du Match
141 - 2020-02-19932Wild8Comets1LSommaire du Match
144 - 2020-02-22956Bruins10Comets0LSommaire du Match
147 - 2020-02-25969Comets2Rocket6LSommaire du Match
149 - 2020-02-27988Comets3Senators7LSommaire du Match
151 - 2020-02-291003Comets4Marlies10LSommaire du Match
152 - 2020-03-011013Comets2Monsters8LSommaire du Match
155 - 2020-03-041032Roadrunners7Comets0LSommaire du Match
157 - 2020-03-061047Eagles9Comets1LSommaire du Match
159 - 2020-03-081064Monsters9Comets0LSommaire du Match
161 - 2020-03-101077Sound Tigers6Comets2LSommaire du Match
163 - 2020-03-121092Comets1Roadrunners7LSommaire du Match
164 - 2020-03-131096Comets3Eagles11LSommaire du Match
166 - 2020-03-151117Moose7Comets5LSommaire du Match
169 - 2020-03-181134Crunch11Comets0LSommaire du Match
171 - 2020-03-201151Comets2Gulls11LSommaire du Match
172 - 2020-03-211161Comets3Reign9LSommaire du Match
174 - 2020-03-231175Comets2Wolves8LSommaire du Match
176 - 2020-03-251189Barracuda10Comets4LSommaire du Match
178 - 2020-03-271204Heat5Comets6WSommaire du Match
179 - 2020-03-281215Gulls8Comets3LSommaire du Match
181 - 2020-03-301227Comets6Stars7LXXSommaire du Match
184 - 2020-04-021253Comets1Roadrunners10LSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
186 - 2020-04-041268Wolves-Comets-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
1 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,230,884$ 1,186,583$ 1,121,583$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 1,230,884$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 3 6,345$ 19,035$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
282362902294247219284116170114211811264120120115212910722722474156622495736818225277173971375272182970014783517019.94%2925381.85%21080236045.76%1321315041.94%536127841.94%1838124520966371056513
382313702192197219-224115160207110492124116210012193127-34621973335301568595920226275675472975301990156214213156620.95%2303186.52%11046240843.44%1168313637.24%464117539.49%1824124921286141031498
4821453030210170284-114418270101483133-50416260201687151-6428170279449126259441123726758268408235211091999176851710921.08%4258979.06%1843262432.13%1116368730.27%390116033.62%15219912509647957422
582136200115200465-2654172900104109238-129416330001191227-136262003415412081625632645878908836424327124429016321613119.25%1114460.36%01103236646.62%1279315140.59%663146445.29%14119842605572936395
682136401103257506-2494173200002139251-1124163201101118255-1372625741967650109895823314112310851090275164150027320601573421.66%1213174.38%01229280543.81%1388351839.45%650153142.46%148010472536564922397
782116601112247582-3354173200011127277-1504143401101120305-1852224740465100111765833100103710381010285133147329821821653018.18%1285259.38%0855258733.05%851308627.58%418155326.92%143310072586564919384
881116900001224637-4134073300000109297-1884143600001115340-22523224408632109273590289697095396795959175724519061151714.78%1123866.07%1677219330.87%945335628.16%418156126.78%11427742853547869337
Total Saison Régulière573129380096222715422912-13702866718604213147891400-611287621940549137531512-75925915422599414112116184914025718841621063036185338298448795336712447178135720.04%141933876.18%568331734339.40%80682308434.95%3539972236.40%10652729917316414766942948
Séries
21275000002426-252300000914-575200000151231424456901498334710110911522415115137215481122.92%47882.98%016338742.12%18450336.58%7717244.77%26217133410016073
Total Séries1275000002426-252300000914-575200000151231424456901498334710110911522415115137215481122.92%47882.98%016338742.12%18450336.58%7717244.77%26217133410016073