ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SEA  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH
LHSRSM

Connexion

Wranglers
GP: 50 | W: 11 | L: 38 | OTL: 1 | P: 23
GF: 186 | GA: 338 | PP%: 23.53% | PK%: 62.00%
DG: | Morale : 50 | Moyenne d’équipe : 61
Prochains matchs #809 vs Wolf Pack
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
IceHogs
28-18-2, 58pts
10
FINAL
5 Wranglers
11-38-1, 23pts
Team Stats
W3StreakW1
17-9-1Home Record6-18-1
11-9-1Away Record5-20-0
6-4-0Last 10 Games3-7-0
6.46Goals Per Game3.72
5.06Goals Against Per Game6.76
29.41%Power Play Percentage23.53%
61.73%Penalty Kill Percentage62.00%
Wranglers
11-38-1, 23pts
7
FINAL
6 Firebirds
6-40-3, 15pts
Team Stats
W1StreakSOL1
6-18-1Home Record3-22-1
5-20-0Away Record3-18-2
3-7-0Last 10 Games2-6-2
3.72Goals Per Game3.73
6.76Goals Against Per Game7.41
23.53%Power Play Percentage22.67%
62.00%Penalty Kill Percentage75.00%
Wranglers
11-38-1, 23pts
2023-02-06
Wolf Pack
34-12-3, 71pts
Statistiques d’équipe
W1SéquenceL1
6-18-1Fiche domicile18-7-1
5-20-0Fiche visiteur16-5-2
3-7-010 derniers matchs8-1-1
3.72Buts par match 4.86
6.76Buts contre par match 2.51
23.53%Pourcentage en avantage numérique19.44%
62.00%Pourcentage en désavantage numérique83.52%
Wranglers
11-38-1, 23pts
2023-02-09
Griffins
26-21-2, 54pts
Statistiques d’équipe
W1SéquenceL1
6-18-1Fiche domicile13-10-2
5-20-0Fiche visiteur13-11-0
3-7-010 derniers matchs5-5-0
3.72Buts par match 3.55
6.76Buts contre par match 2.94
23.53%Pourcentage en avantage numérique27.03%
62.00%Pourcentage en désavantage numérique75.31%
Wranglers
11-38-1, 23pts
2023-02-11
Americans
14-32-4, 32pts
Statistiques d’équipe
W1SéquenceL3
6-18-1Fiche domicile5-17-3
5-20-0Fiche visiteur9-15-1
3-7-010 derniers matchs2-8-0
3.72Buts par match 4.62
6.76Buts contre par match 5.34
23.53%Pourcentage en avantage numérique25.29%
62.00%Pourcentage en désavantage numérique63.75%
Meneurs d'équipe
Lassi ThomsonButs
Lassi Thomson
9
Lassi ThomsonPasses
Lassi Thomson
24
Lassi ThomsonPoints
Lassi Thomson
33
Lassi ThomsonPlus/Moins
Lassi Thomson
-27

Statistiques d’équipe
Buts pour
186
3.72 GFG
Tirs pour
1840
36.80 Avg
Pourcentage en avantage numérique
23.5%
16 GF
Début de zone offensive
33.9%
Buts contre
338
6.76 GAA
Tirs contre
2869
57.38 Avg
Pourcentage en désavantage numérique
62.0%
19 GA
Début de la zone défensive
41.2%
Informations de l'équipe

Directeur général
DivisionPacifique
ConférenceOuest
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison300


Informations de la formation

Équipe Pro10
Équipe Mineure18
Limite contact 28 / 250
Espoirs19


Historique d'équipe

Saison actuelle11-38-1 (23PTS)
Historique102-497-20 (0.165%)
Apparitions en séries éliminatoires 0
Historique en séries éliminatoires (W-L)-
Coupe Stanley0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Jayson MegnaX100.00723783647682796374666264637274050650312750,000$
2Michael Pezzetta (R)X100.00817960668178846256626457626466050630232750,000$
3Stefan MatteauX100.00784479598278665771605864566870050620271750,000$
4Devante Smith-PellyX100.00703892547961765551565758537072050600291650,000$
5Grant Mismash (R)XX100.00633889537269865554565751546365050590222925,000$
6Mattias Norlinder (R)X100.00613687667177656330645861506264050620213925,000$
7Robbie RussoX100.00643787597369935830645357466971050610282750,000$
8Ryan StantonX100.00683975567771835530595356467375050600321650,000$
9Kevin CzuczmanX100.00593891568277755430555358457173050590301750,000$
Rayé
MOYENNE D’ÉQUIPE100.0068438359777479584760575853687005061
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Ken Appleby100.0073686788727173727173726777050630261725,000$
Rayé
MOYENNE D’ÉQUIPE100.007368678872717372717372677705063
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Stefan MatteauWranglers (CGY)C50522375-3116022814040413727712.87%66106921.39751253680001344161.03%27200061.4013000864
2Devante Smith-PellyWranglers (CGY)RW50501363-3515520512533210623315.06%8285317.082132746000073254.10%6100041.4823001343
3Ryan StantonWranglers (CGY)D5094352-51280205779337809.68%102104620.944592339000016010.00%000000.9922000034
4Kevin CzuczmanWranglers (CGY)D50123749-51806084107338811.21%124106521.3115622390000340055.56%900000.9200000111
5Lassi ThomsonFlamesD2892433-2760816465256613.85%6456720.271121940000015100.00%000001.1622000120
Statistiques d’équipe totales ou en moyenne228132140272-195735779490100133874413.19%438460220.1915173214423300011108459.65%342000101.18710001131612
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Statistiques d’équipe totales ou en moyenne0.0000.0000.000


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Devante Smith-PellyWranglers (CGY)RW291992-06-14No223 Lbs6 ft0NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Grant MismashWranglers (CGY)C/LW221999-02-19Yes186 Lbs6 ft0NoNoNo2Pro & Farm925,000$0$0$No925,000$Lien NHL
Jayson MegnaWranglers (CGY)C311990-02-01No195 Lbs6 ft1NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien / Lien NHL
Ken ApplebyWranglers (CGY)G261995-04-10No210 Lbs6 ft4NoNoNo1Pro & Farm725,000$0$0$NoLien / Lien NHL
Kevin CzuczmanWranglers (CGY)D301991-01-09No206 Lbs6 ft2NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
Mattias NorlinderWranglers (CGY)D212000-04-12Yes185 Lbs6 ft0NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Lien NHL
Michael PezzettaWranglers (CGY)LW231998-03-13Yes216 Lbs6 ft1NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien / Lien NHL
Robbie RussoWranglers (CGY)D281993-02-15No191 Lbs6 ft0NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien / Lien NHL
Ryan StantonWranglers (CGY)D321989-07-20No200 Lbs6 ft1NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Stefan MatteauWranglers (CGY)C271994-02-23No208 Lbs6 ft2NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
1026.90202 Lbs6 ft11.60762,500$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Stefan Matteau40122
2Devante Smith-Pelly30122
320122
410122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Kevin CzuczmanRyan Stanton40122
230122
320122
4Kevin CzuczmanRyan Stanton10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Stefan Matteau60122
2Devante Smith-Pelly40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Kevin CzuczmanRyan Stanton60122
240122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Stefan Matteau60122
2Devante Smith-Pelly40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Kevin CzuczmanRyan Stanton60122
240122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Stefan Matteau60122Kevin CzuczmanRyan Stanton60122
24012240122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Stefan Matteau60122
2Devante Smith-Pelly40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Kevin CzuczmanRyan Stanton60122
240122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Stefan MatteauKevin CzuczmanRyan Stanton
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Stefan MatteauKevin CzuczmanRyan Stanton
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
, Devante Smith-Pelly, Stefan Matteau, Devante Smith-PellyStefan Matteau
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
, , Kevin Czuczman, Kevin Czuczman
Tirs de pénalité
Stefan Matteau, , Devante Smith-Pelly, ,
Gardien
#1 : , #2 :


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2100000113941000000145-11100000094530.7501322350082594291375786585912681270583133.33%000.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
2Americans1010000049-51010000049-50000000000000.000461000825942930578658591265820422000.00%10100.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
3Barracuda20200000617-110000000000020200000617-1100.000612180082594295257865859126154524474125.00%2150.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
4Bears20200000310-71010000024-21010000016-500.0003580082594295957865859126116252467228.57%10100.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
5Bruins1010000027-5000000000001010000027-500.00024600825942935578658591266614818400.00%4175.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
6Canucks20200000815-720200000815-70000000000000.0008142200825942914157865859126110326574125.00%3233.33%0496139235.63%472169227.90%297102329.03%9526861493330569251
7Checkers201000101013-3100000107611010000037-420.5001016260082594296657865859126801904211100.00%10100.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
8Comets20200000415-111010000028-61010000027-500.0004590082594294357865859126105264323133.33%2150.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
9Condors312000001616021100000111011010000056-120.33316264200825942916257865859126146330103100.00%000.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
10Crunch20200000313-101010000036-31010000007-700.0003580082594294557865859126107386355120.00%4250.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
11Eagles202000001317-4202000001317-40000000000000.0001323361082594291225786585912613232871000.00%40100.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
12Firebirds320000102015510000010541220000001511461.00020365600825942917757865859126167392104000.00%110.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
13Gulls1010000016-5000000000001010000016-500.00011200825942923578658591266125219200.00%110.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
14IceHogs20200000919-1010100000510-51010000049-500.00091625008259429715786585912613449836300.00%4250.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
15Islanders20200000115-141010000008-81010000017-600.00011200825942947578658591269535442500.00%20100.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
16Marlies1010000008-8000000000001010000008-800.00000000825942915578658591265222222000.00%110.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
17Monsters20200000517-121010000029-71010000038-500.00058130082594294157865859126141396482150.00%30100.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
18Moose20200000515-101010000036-31010000029-700.0005712008259429735786585912614738860200.00%4175.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
19Penguins2110000069-31010000026-41100000043120.5006121800825942947578658591261104104011100.00%000.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
20Phantoms1010000057-2000000000001010000057-200.0005914008259429305786585912655100202150.00%000.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
21Reign20200000915-61010000045-110100000510-500.00091726008259429495786585912610825436500.00%2150.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
22Roadrunners1010000028-61010000028-60000000000000.00023500825942923578658591265215423200.00%2150.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
23Rocket2110000012111110000007521010000056-120.5001219310082594298157865859126117310722150.00%000.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
24Silver Knights11000000431110000004310000000000021.000481200825942928578658591265619222200.00%000.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
25Stars10001000651000000000001000100065121.0006111700825942965578658591264685312150.00%000.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
26Thunderbirds30300000424-2010100000211-920200000213-1100.00046100082594296857865859126223636655360.00%3166.67%0496139235.63%472169227.90%297102329.03%9526861493330569251
27Wild1010000049-51010000049-50000000000000.0004590082594293257865859126619421000.00%20100.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
28Wolves2110000011110110000008351010000038-520.50011193000825942978578658591268922643100.00%330.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
Total5083801021186338-1522541800021102167-65254200100084171-87230.23018631650210825942918405786585912628698081051235681623.53%501962.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
_Since Last GM Reset5083801021186338-1522541800021102167-65254200100084171-87230.23018631650210825942918405786585912628698081051235681623.53%501962.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
_Vs Conference2761801011127180-5315310000117195-241238010005685-29170.31512722034710825942912335786585912615444256373131412.90%281353.57%0496139235.63%472169227.90%297102329.03%9526861493330569251
_Vs Division144120001056106-50827000103366-33625000002340-17100.3575693149108259429591578658591268762414336517529.41%19573.68%0496139235.63%472169227.90%297102329.03%9526861493330569251

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
5023W118631650218402869808105123510
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
508381021186338
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
254180021102167
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
25420100084171
Derniers 10 matchs
WLOTWOTL SOWSOL
271000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
681623.53%501962.00%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
578658591268259429
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
496139235.63%472169227.90%297102329.03%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
9526861493330569251


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
7 - 2022-10-1318Eagles10Wranglers8BLSommaire du match
9 - 2022-10-1537Wranglers5Condors6ALSommaire du match
12 - 2022-10-1855Silver Knights3Wranglers4BWSommaire du match
14 - 2022-10-2068Americans9Wranglers4BLSommaire du match
16 - 2022-10-2286Wolves3Wranglers8BWSommaire du match
19 - 2022-10-25104Penguins6Wranglers2BLSommaire du match
23 - 2022-10-29138Condors6Wranglers3BLSommaire du match
26 - 2022-11-01155Firebirds4Wranglers5BWXXSommaire du match
28 - 2022-11-03169Admirals5Wranglers4BLXXSommaire du match
30 - 2022-11-05187Comets8Wranglers2BLSommaire du match
32 - 2022-11-07193Wranglers1Islanders7ALSommaire du match
33 - 2022-11-08197Wranglers2Comets7ALSommaire du match
35 - 2022-11-10211Wranglers2Bruins7ALSommaire du match
37 - 2022-11-12236Moose6Wranglers3BLSommaire du match
39 - 2022-11-14245Reign5Wranglers4BLSommaire du match
42 - 2022-11-17260Wranglers0Crunch7ALSommaire du match
44 - 2022-11-19275Wranglers3Checkers7ALSommaire du match
46 - 2022-11-21292Wranglers5Phantoms7ALSommaire du match
48 - 2022-11-23306Wranglers4Penguins3AWSommaire du match
50 - 2022-11-25322Wranglers1Bears6ALSommaire du match
51 - 2022-11-26333Wranglers3Wolves8ALSommaire du match
54 - 2022-11-29358Checkers6Wranglers7BWXXSommaire du match
56 - 2022-12-01372Rocket5Wranglers7BWSommaire du match
58 - 2022-12-03390Bears4Wranglers2BLSommaire du match
60 - 2022-12-05401Roadrunners8Wranglers2BLSommaire du match
62 - 2022-12-07414Wild9Wranglers4BLSommaire du match
64 - 2022-12-09424Wranglers3Monsters8ALSommaire du match
65 - 2022-12-10438Wranglers0Marlies8ALSommaire du match
67 - 2022-12-12448Wranglers5Rocket6ALSommaire du match
69 - 2022-12-14468Canucks7Wranglers3BLSommaire du match
71 - 2022-12-16482Thunderbirds11Wranglers2BLSommaire du match
73 - 2022-12-18501Wranglers5Barracuda7ALSommaire du match
75 - 2022-12-20517Wranglers1Barracuda10ALSommaire du match
77 - 2022-12-22531Wranglers5Reign10ALSommaire du match
78 - 2022-12-23544Wranglers1Gulls6ALSommaire du match
82 - 2022-12-27555Condors4Wranglers8BWSommaire du match
83 - 2022-12-28561Wranglers8Firebirds5AWSommaire du match
86 - 2022-12-31587Canucks8Wranglers5BLSommaire du match
89 - 2023-01-03603Wranglers2Moose9ALSommaire du match
92 - 2023-01-06626Islanders8Wranglers0BLSommaire du match
94 - 2023-01-08641Wranglers4IceHogs9ALSommaire du match
96 - 2023-01-10655Wranglers1Thunderbirds4ALSommaire du match
98 - 2023-01-12670Wranglers1Thunderbirds9ALSommaire du match
100 - 2023-01-14677Wranglers6Stars5AWXSommaire du match
102 - 2023-01-16703Wranglers9Admirals4AWSommaire du match
104 - 2023-01-18715Eagles7Wranglers5BLSommaire du match
107 - 2023-01-21733Crunch6Wranglers3BLSommaire du match
109 - 2023-01-23754Monsters9Wranglers2BLSommaire du match
112 - 2023-01-26777IceHogs10Wranglers5BLSommaire du match
113 - 2023-01-27786Wranglers7Firebirds6AWSommaire du match
123 - 2023-02-06809Wranglers-Wolf Pack-
126 - 2023-02-09825Wranglers-Griffins-
128 - 2023-02-11833Wranglers-Americans-
130 - 2023-02-13850Wranglers-Senators-
133 - 2023-02-16875Griffins-Wranglers-
135 - 2023-02-18891Wolf Pack-Wranglers-
137 - 2023-02-20905Phantoms-Wranglers-
139 - 2023-02-22919Wranglers-Roadrunners-
140 - 2023-02-23928Wranglers-Silver Knights-
142 - 2023-02-25945Wranglers-Eagles-
145 - 2023-02-28965Bruins-Wranglers-
147 - 2023-03-02979Marlies-Wranglers-
149 - 2023-03-04999Wild-Wranglers-
151 - 2023-03-061008Wranglers-Stars-
152 - 2023-03-071018Wranglers-Wild-
155 - 2023-03-101037Gulls-Wranglers-
157 - 2023-03-121058Senators-Wranglers-
159 - 2023-03-141072Wranglers-Roadrunners-
161 - 2023-03-161087Wranglers-Silver Knights-
163 - 2023-03-181105Stars-Wranglers-
165 - 2023-03-201119Wranglers-Reign-
166 - 2023-03-211131Wranglers-Gulls-
168 - 2023-03-231144Silver Knights-Wranglers-
170 - 2023-03-251154Barracuda-Wranglers-
173 - 2023-03-281183Reign-Wranglers-
176 - 2023-03-311202Wranglers-Canucks-
178 - 2023-04-021225Gulls-Wranglers-
180 - 2023-04-041236IceHogs-Wranglers-
181 - 2023-04-051240Wranglers-Moose-
184 - 2023-04-081270Wranglers-Canucks-
186 - 2023-04-101282Admirals-Wranglers-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
188 - 2023-04-121297Barracuda-Wranglers-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
-16 0 - 0.00% 0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
475,437$ 762,500$ 0$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 475,437$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 74 4,034$ 298,516$




TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison régulière
482225400411246378-13241132500201133187-544192900210113191-78512464026481009287662887094996597029998771449189656612121.38%58817170.92%31659314552.75%1144263643.40%715139351.33%193413242004621998489
582126102223165350-185417290111281153-72415320111184197-1133716531548010070514023170779788731471914098815061882915.43%311164.52%0586203128.85%1091410226.60%343122428.02%11357552930587887351
68257301021152487-335414350001177240-163411380101075247-1721715229344500055484623540760782798653918912201913161138.07%962969.79%2570203028.08%1215499124.34%328133124.64%9486103144579843308
78208000110148676-528410390011083323-240410410000065353-2883148287435000583950222507496738006773193617318171171311.11%772666.23%0583200429.09%994377526.33%387151225.60%9125873160575853299
88227501022190713-5234113601012102353-251411390001088360-2721219036555500083584625790809880864658219171731951961717.71%763356.58%0633198331.92%1046364028.74%464160128.98%9996523081561859318
982195601312307425-11841112701011157199-424182900301150226-76473074927990201219787349801159117011494113118129518071753520.00%1304267.69%21564295153.00%1534323447.43%756148950.77%174112462222559979457
1082136001233221402-1814163200201105196-914172801032116206-90392213916122081676982375768838747594417121536919791432920.28%1703380.59%2841234335.89%1357382635.47%508133837.97%152510532483584953420
115083801021186338-1522541800021102167-65254200100084171-872318631650210825942918405786585912628698081051235681623.53%501962.00%0496139235.63%472169227.90%297102329.03%9526861493330569251
Total Saison régulière624814970712141316153769-215431246241036798401818-97831235256046747751951-1176229161528614476521636054913522007513466701659653973901111234287214104151427318.03%121836470.11%969321787938.77%88532789631.74%37981091134.81%10148691620521439969442897