ANA  ARI  BOS  BUF  CAR  CBJ  CGY  CHI  COL  DAL  DET  EDM  FLO  LAK  MIN  MTL  NJD  NSH  NYI  NYR  OTT  PHI  PIT  SEA  SJS  STL  TBL  TOR  VAN  VGK  WPG  WSH
LHSRSM

Connexion

Americans
GP: 50 | W: 14 | L: 32 | OTL: 4 | P: 32
GF: 231 | GA: 267 | PP%: 25.29% | PK%: 63.75%
DG: Hugo Ste-Marie | Morale : 50 | Moyenne d’équipe : 63
Prochains matchs #805 vs Wolves
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Americans
14-32-4, 32pts
2
FINAL
9 Moose
27-20-4, 58pts
Team Stats
L3StreakL1
5-17-3Home Record13-10-2
9-15-1Away Record14-10-2
2-8-0Last 10 Games4-4-2
4.62Goals Per Game5.02
5.34Goals Against Per Game4.41
25.29%Power Play Percentage19.23%
63.75%Penalty Kill Percentage80.52%
Americans
14-32-4, 32pts
4
FINAL
5 Wild
32-16-0, 64pts
Team Stats
L3StreakW2
5-17-3Home Record18-6-0
9-15-1Away Record14-10-0
2-8-0Last 10 Games6-4-0
4.62Goals Per Game4.46
5.34Goals Against Per Game2.88
25.29%Power Play Percentage18.52%
63.75%Penalty Kill Percentage84.88%
Wolves
10-37-2, 22pts
2023-02-01
Americans
14-32-4, 32pts
Statistiques d’équipe
L2SéquenceL3
7-15-1Fiche domicile5-17-3
3-22-1Fiche visiteur9-15-1
1-8-110 derniers matchs2-8-0
3.94Buts par match 4.62
7.20Buts contre par match 5.34
13.48%Pourcentage en avantage numérique25.29%
53.62%Pourcentage en désavantage numérique63.75%
Wranglers
11-38-1, 23pts
2023-02-11
Americans
14-32-4, 32pts
Statistiques d’équipe
W1SéquenceL3
6-18-1Fiche domicile5-17-3
5-20-0Fiche visiteur9-15-1
3-7-010 derniers matchs2-8-0
3.72Buts par match 4.62
6.76Buts contre par match 5.34
23.53%Pourcentage en avantage numérique25.29%
62.00%Pourcentage en désavantage numérique63.75%
Americans
14-32-4, 32pts
2023-02-13
Reign
39-9-4, 82pts
Statistiques d’équipe
L3SéquenceL1
5-17-3Fiche domicile22-3-0
9-15-1Fiche visiteur17-6-4
2-8-010 derniers matchs6-3-1
4.62Buts par match 5.17
5.34Buts contre par match 2.90
25.29%Pourcentage en avantage numérique28.74%
63.75%Pourcentage en désavantage numérique80.17%
Meneurs d'équipe
Jesper BoqvistButs
Jesper Boqvist
6
Xavier OuelletPasses
Xavier Ouellet
14
Jesper BoqvistPoints
Jesper Boqvist
17
Xavier OuelletPlus/Moins
Xavier Ouellet
10

Statistiques d’équipe
Buts pour
231
4.62 GFG
Tirs pour
2270
45.40 Avg
Pourcentage en avantage numérique
25.3%
22 GF
Début de zone offensive
45.7%
Buts contre
267
5.34 GAA
Tirs contre
1796
35.92 Avg
Pourcentage en désavantage numérique
63.8%
29 GA
Début de la zone défensive
30.2%
Informations de l'équipe

Directeur généralHugo Ste-Marie
DivisionNord
ConférenceEst
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison300


Informations de la formation

Équipe Pro23
Équipe Mineure20
Limite contact 43 / 250
Espoirs30


Historique d'équipe

Saison actuelle14-32-4 (32PTS)
Historique353-382-47 (0.451%)
Apparitions en séries éliminatoires 4
Historique en séries éliminatoires (W-L)12-20
Coupe Stanley0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Alex NewhookXXX100.005936947668858673757267637462650506702021,491,667$
2Eeli TolvanenXX100.007734827170838768566970667363660506702231,450,000$
3Joe VelenoX100.007638896779839566826465686762640506602111,243,750$
4Patrick BrownX100.00813992648079756289636275626970050660292750,000$
5Cole SchneiderX100.00663893628085936355646559647277050650311650,000$
6Cedric PaquetteX100.00834573607579776174626371647273050640281950,000$
7Brendan LemieuxXX100.008682596580768564566362566167680506402511,550,000$
8Sam SteelX100.00593493687082866783666459686465050640231874,125$
9Riley BarberX100.00643884627480786366616459676970050630271800,000$
10Pontus AbergX100.00643889667385646268675558646971050620281750,000$
11Scott WilsonX100.00593789586987855761565958567072050610291700,000$
12Ilya LyubushkinX100.008739846582878962306856764969680506602711,350,000$
13Chris WidemanX100.00633677726685796830766358537275050660313750,000$
14Josh BrownX100.008768736193848158306455784568700506502711,200,000$
15J.J. Moser (R)X100.00633877667287856730666264536263050640213925,000$
Rayé
1Kristian Reichel (R)X100.00623780566883735767585962596466050600231752,500$
2Ostap SafinX100.00814083579071655552545558566365050600221879,167$
3Ivan Lodnia (R)X100.00643786577377665652545553586365050580221871,667$
4Adam ClendeningX100.00644172607376955930665457487072050610281750,000$
5Aaron NessX100.00583791566766835530595354467274050590311725,000$
MOYENNE D’ÉQUIPE100.0070428363758181625664606359676905063
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1J-F Berube100.0073747375727173727173727185050630301750,000$
2Alex Stalock100.0073707269727173727173727689050630341785,000$
3Samuel Ersson (R)100.0064676676636264636264636569050580213925,000$
Rayé
MOYENNE D’ÉQUIPE100.007070707369687069687069718105061
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Alex NewhookAmericans (BUF)C/LW/RW50364783820241642969318612.16%21117823.571121323740000734159.37%145200121.4114000445
2Eeli TolvanenAmericans (BUF)LW/RW5035336882201601202588619113.57%21116723.3643724740002632152.50%8000021.1614000333
3Ilya LyubushkinAmericans (BUF)D50144054-834017582100236414.00%104116223.2494133575000042000.00%000000.9300000223
4Patrick BrownAmericans (BUF)C50282452-2200132172282711869.93%31100420.0923519670000282165.04%118700001.0424000431
5Pontus AbergAmericans (BUF)RW50153348-31003882158341109.49%1396919.393361570000002059.42%6900010.9900000102
6Josh BrownAmericans (BUF)D5063743-6380144679742736.19%83100720.161232568000051000.00%000000.8500000000
7Chris WidemanAmericans (BUF)D5043943-88030726628496.06%54117423.482461975000055000.00%000000.7300000010
8Cole SchneiderAmericans (BUF)LW50192241-31003569205571389.27%1398019.6202223700000100051.72%5800000.8400000030
9Scott WilsonAmericans (BUF)LW50211637-31207087214451399.81%4583316.67000110000311148.39%6200010.8900000110
10Joe VelenoAmericans (BUF)C311323364120686116536927.88%1352516.9400000000001171.05%11400001.3701000111
11Riley BarberAmericans (BUF)RW5013233612005336127386910.24%1296419.29066775000001047.06%6800100.7501000011
12Brendan LemieuxAmericans (BUF)LW/RW3491524163401123310521648.57%264118.881121346000000158.00%5000000.7500000101
13Jesper BoqvistSabresC/LW/RW126111796094752163211.54%125321.17000425000050052.32%32300001.3400000021
14Xavier OuelletSabresD20114151060451721394.76%2232516.2600000000122000.00%000000.9200000001
15J.J. MoserAmericans (BUF)D19311141120921336199.09%1938420.240111118000133000.00%000000.7300000000
16Ville HeinolaSabresD94711900313222618.18%514315.990000000003000.00%000001.5300000000
17Cedric PaquetteAmericans (BUF)C50011-2003011350.00%2280.56000030000100061.54%1300000.7100000000
18Sam SteelAmericans (BUF)C50000-100024210.00%160.140000100000000.00%000000.00%01000000
Statistiques d’équipe totales ou en moyenne725227396623232060111011452216606143310.24%4621275317.59234164219747000443313660.30%347600260.98415000172119
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Statistiques d’équipe totales ou en moyenne0.0000.0000.000


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Aaron NessAmericans (BUF)D311990-05-18No184 Lbs5 ft10NoNoNo1Pro & Farm725,000$0$0$NoLien / Lien NHL
Adam ClendeningAmericans (BUF)D281992-10-26No194 Lbs6 ft0NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
Alex NewhookAmericans (BUF)C/LW/RW202001-01-28No190 Lbs5 ft10NoNoNo2Pro & Farm1,491,667$0$0$No1,491,667$Lien / Lien NHL
Alex StalockAmericans (BUF)G341987-07-28No170 Lbs5 ft11NoNoNo1Pro & Farm785,000$0$0$NoLien / Lien NHL
Brendan LemieuxAmericans (BUF)LW/RW251996-03-15No215 Lbs6 ft1NoNoNo1Pro & Farm1,550,000$0$0$NoLien / Lien NHL
Cedric PaquetteAmericans (BUF)C281993-08-13No205 Lbs6 ft0NoNoNo1Pro & Farm950,000$0$0$NoLien / Lien NHL
Chris WidemanAmericans (BUF)D311990-01-07No180 Lbs5 ft10NoNoNo3Pro & Farm750,000$0$0$No762,500$762,500$Lien / Lien NHL
Cole SchneiderAmericans (BUF)LW311990-08-26No199 Lbs6 ft2NoNoNo1Pro & Farm650,000$0$0$NoLien / Lien NHL
Eeli TolvanenAmericans (BUF)LW/RW221999-04-22No191 Lbs5 ft10NoNoNo3Pro & Farm1,450,000$0$0$No1,450,000$1,450,000$Lien / Lien NHL
Ilya LyubushkinAmericans (BUF)D271994-04-06No208 Lbs6 ft2NoNoNo1Pro & Farm1,350,000$0$0$NoLien / Lien NHL
Ivan LodniaAmericans (BUF)RW221999-08-31Yes202 Lbs5 ft11NoNoNo1Pro & Farm871,667$0$0$NoLien NHL
J-F BerubeAmericans (BUF)G301991-07-13No177 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
J.J. MoserAmericans (BUF)D212000-06-06Yes173 Lbs6 ft1NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Lien NHL
Joe VelenoAmericans (BUF)C212000-01-13No206 Lbs6 ft1NoNoNo1Pro & Farm1,243,750$0$0$NoLien / Lien NHL
Josh BrownAmericans (BUF)D271994-01-21No220 Lbs6 ft5NoNoNo1Pro & Farm1,200,000$0$0$NoLien / Lien NHL
Kristian ReichelAmericans (BUF)C231998-06-11Yes168 Lbs6 ft0NoNoNo1Pro & Farm752,500$0$0$NoLien / Lien NHL
Ostap SafinAmericans (BUF)LW221999-02-11No204 Lbs6 ft5NoNoNo1Pro & Farm879,167$0$0$NoLien / Lien NHL
Patrick BrownAmericans (BUF)C291992-05-29No210 Lbs6 ft1NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien / Lien NHL
Pontus AbergAmericans (BUF)RW281993-09-23No194 Lbs6 ft0NoNoNo1Pro & Farm750,000$0$0$NoLien / Lien NHL
Riley BarberAmericans (BUF)RW271994-02-07No199 Lbs6 ft0NoNoNo1Pro & Farm800,000$0$0$NoLien / Lien NHL
Sam SteelAmericans (BUF)C231998-02-03No184 Lbs5 ft11NoNoNo1Pro & Farm874,125$0$0$NoLien / Lien NHL
Samuel ErssonAmericans (BUF)G211999-10-20Yes176 Lbs6 ft2NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Lien NHL
Scott WilsonAmericans (BUF)LW291992-04-24No177 Lbs5 ft11NoNoNo1Pro & Farm700,000$0$0$NoLien / Lien NHL
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2326.09192 Lbs6 ft01.43950,995$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Eeli TolvanenAlex NewhookRiley Barber40122
2Cole SchneiderPatrick BrownPontus Aberg30122
3Scott Wilson20122
4Alex NewhookEeli Tolvanen10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Chris WidemanIlya Lyubushkin40122
2Josh Brown30122
320122
4Chris WidemanIlya Lyubushkin10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Eeli TolvanenAlex NewhookRiley Barber60122
2Cole SchneiderPatrick BrownPontus Aberg40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Chris WidemanIlya Lyubushkin60122
2Josh Brown40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Alex NewhookEeli Tolvanen60122
2Patrick Brown40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Chris WidemanIlya Lyubushkin60122
2Josh Brown40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Alex Newhook60122Chris WidemanIlya Lyubushkin60122
2Eeli Tolvanen40122Josh Brown40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Alex NewhookEeli Tolvanen60122
2Patrick Brown40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Chris WidemanIlya Lyubushkin60122
2Josh Brown40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Eeli TolvanenAlex NewhookRiley BarberChris WidemanIlya Lyubushkin
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Eeli TolvanenAlex NewhookRiley BarberChris WidemanIlya Lyubushkin
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Cedric Paquette, Sam Steel, Scott WilsonCedric Paquette, Sam SteelScott Wilson
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
, , Josh Brown, Josh Brown
Tirs de pénalité
Alex Newhook, Eeli Tolvanen, Patrick Brown, ,
Gardien
#1 : , #2 :


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000057-2000000000001010000057-200.0005914001046660455747775727374420615000.00%20100.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
2Barracuda1010000047-31010000047-30000000000000.0004812001046660444747775727373492222150.00%10100.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
3Bears1010000068-2000000000001010000068-200.0006101610104666043174777572737539818000.00%4250.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
4Bruins2020000039-61010000013-21010000026-400.000358001046660468747775727374814447100.00%2150.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
5Canucks220000002271511000000124811000000103741.000224062001046660413974777572737581363011100.00%3166.67%01107185359.74%668122254.66%54897856.03%13319931088304600315
6Checkers20200000810-220200000810-20000000000000.00081119001046660482747775727375191636100.00%8712.50%01107185359.74%668122254.66%54897856.03%13319931088304600315
7Comets1010000035-21010000035-20000000000000.000369001046660457747775727371552216116.67%110.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
8Condors11000000927000000000001100000092721.0009162500104666046674777572737197628100.00%30100.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
9Crunch302000011016-620100001610-41010000046-210.1671017270010466604117747775727371133018699444.44%9277.78%01107185359.74%668122254.66%54897856.03%13319931088304600315
10Eagles201000011115-41000000156-11010000069-310.2501119300010466604175747775727379229245100.00%10100.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
11Firebirds220000001486110000005321100000095441.0001426400010466604118747775727376119235000.00%10100.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
12Griffins31100010161062110000012751000001043140.6671628440010466604134747775727379832853600.00%3166.67%01107185359.74%668122254.66%54897856.03%13319931088304600315
13Gulls1010000035-21010000035-20000000000000.000358001046660434747775727376011418200.00%2150.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
14IceHogs211000001213-11010000046-21100000087120.500122335001046660478747775727379024145233100.00%6266.67%01107185359.74%668122254.66%54897856.03%13319931088304600315
15Islanders1010000036-31010000036-30000000000000.0003690010466604297477757273757152293266.67%000.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
16Marlies1010000046-2000000000001010000046-200.0004812001046660448747775727373215021200.00%000.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
17Monsters20200000611-50000000000020200000611-500.00069150010466604807477757273778234406116.67%2150.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
18Moose20200000614-81010000045-11010000029-700.00061117001046660495747775727378630858400.00%330.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
19Penguins30200001916-720100001511-61010000045-110.16791625001046660410374777572737109348727114.29%3166.67%01107185359.74%668122254.66%54897856.03%13319931088304600315
20Reign10100000610-410100000610-40000000000000.00061117001046660440747775727374818828000.00%4175.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
21Roadrunners20100100812-41010000058-31000010034-110.250814220010466604587477757273768211246100.00%6266.67%01107185359.74%668122254.66%54897856.03%13319931088304600315
22Rocket220000001055110000006241100000043141.000101828001046660410974777572737561714622150.00%6266.67%01107185359.74%668122254.66%54897856.03%13319931088304600315
23Senators30300000815-71010000034-120200000511-600.00081624001046660410674777572737102276706116.67%4175.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
24Silver Knights20200000714-71010000046-21010000038-500.000712190010466604537477757273788214345360.00%20100.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
25Stars11000000862000000000001100000086221.00081321001046660471747775727373080172150.00%000.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
26Thunderbirds20200000615-91010000027-51010000048-400.0006121800104666048074777572737762503710110.00%000.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
27Wild211000001091110000006421010000045-120.500101929001046660490747775727376818241300.00%10100.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
28Wolves11000000523000000000001100000052321.00059140010466604527477757273732176242150.00%30100.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
29Wranglers11000000945000000000001100000094521.0009182700104666045874777572737307230100.00%000.00%01107185359.74%668122254.66%54897856.03%13319931088304600315
Total50133200113231267-362551700003107129-222581500110124138-14320.320231415646101046660422707477757273717965271741098872225.29%802963.75%01107185359.74%668122254.66%54897856.03%13319931088304600315
_Since Last GM Reset50133200113231267-362551700003107129-222581500110124138-14320.320231415646101046660422707477757273717965271741098872225.29%802963.75%01107185359.74%668122254.66%54897856.03%13319931088304600315
_Vs Conference232190000276122-461219000023758-2111110000003964-2560.1307613421010104666049107477757273779022382522531222.64%391853.85%01107185359.74%668122254.66%54897856.03%13319931088304600315
_Vs Division1629000015971-129130000136360716000002335-1250.156591031620010466604664747775727375001446635827622.22%321456.25%01107185359.74%668122254.66%54897856.03%13319931088304600315

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
5032L323141564622701796527174109810
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
5013320113231267
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
255170003107129
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
258150110124138
Derniers 10 matchs
WLOTWOTL SOWSOL
280000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
872225.29%802963.75%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
7477757273710466604
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1107185359.74%668122254.66%54897856.03%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
13319931088304600315


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
7 - 2022-10-1313Senators4Americans3BLSommaire du match
9 - 2022-10-1525Checkers5Americans4BLSommaire du match
12 - 2022-10-1854Americans9Condors2AWSommaire du match
14 - 2022-10-2068Americans9Wranglers4AWSommaire du match
16 - 2022-10-2284Americans10Canucks3AWSommaire du match
19 - 2022-10-25105Americans9Firebirds5AWSommaire du match
21 - 2022-10-27114Rocket2Americans6BWSommaire du match
23 - 2022-10-29133IceHogs6Americans4BLSommaire du match
25 - 2022-10-31144Griffins1Americans7BWSommaire du match
27 - 2022-11-02160Penguins7Americans2BLSommaire du match
29 - 2022-11-04175Americans5Wolves2AWSommaire du match
30 - 2022-11-05181Americans4Crunch6ALSommaire du match
33 - 2022-11-08196Roadrunners8Americans5BLSommaire du match
35 - 2022-11-10215Silver Knights6Americans4BLSommaire du match
37 - 2022-11-12228Bruins3Americans1BLSommaire du match
40 - 2022-11-15252Canucks4Americans12BWSommaire du match
41 - 2022-11-16257Americans3Senators4ALSommaire du match
44 - 2022-11-19277Americans4Marlies6ALSommaire du match
47 - 2022-11-22301Americans4Rocket3AWSommaire du match
48 - 2022-11-23308Thunderbirds7Americans2BLSommaire du match
50 - 2022-11-25327Comets5Americans3BLSommaire du match
53 - 2022-11-28347Crunch5Americans4BLXXSommaire du match
55 - 2022-11-30361Americans4Griffins3AWXXSommaire du match
56 - 2022-12-01365Eagles6Americans5BLXXSommaire du match
59 - 2022-12-04395Barracuda7Americans4BLSommaire du match
62 - 2022-12-07412Americans4Monsters5ALSommaire du match
64 - 2022-12-09426Penguins4Americans3BLXXSommaire du match
65 - 2022-12-10437Americans4Penguins5ALSommaire du match
68 - 2022-12-13457Reign10Americans6BLSommaire du match
70 - 2022-12-15479Americans6Eagles9ALSommaire du match
72 - 2022-12-17492Americans3Roadrunners4ALXSommaire du match
74 - 2022-12-19507Americans3Silver Knights8ALSommaire du match
78 - 2022-12-23536Crunch5Americans2BLSommaire du match
82 - 2022-12-27547Americans2Monsters6ALSommaire du match
84 - 2022-12-29563Griffins6Americans5BLSommaire du match
86 - 2022-12-31578Americans2Bruins6ALSommaire du match
87 - 2023-01-01593Americans2Senators7ALSommaire du match
89 - 2023-01-03599Americans6Bears8ALSommaire du match
93 - 2023-01-07631Wild4Americans6BWSommaire du match
96 - 2023-01-10651Firebirds3Americans5BWSommaire du match
98 - 2023-01-12668Moose5Americans4BLSommaire du match
100 - 2023-01-14686Americans5Admirals7ALSommaire du match
102 - 2023-01-16694Checkers5Americans4BLSommaire du match
103 - 2023-01-17709Americans8IceHogs7AWSommaire du match
105 - 2023-01-19722Islanders6Americans3BLSommaire du match
107 - 2023-01-21732Gulls5Americans3BLSommaire du match
109 - 2023-01-23753Americans8Stars6AWSommaire du match
110 - 2023-01-24761Americans4Thunderbirds8ALSommaire du match
112 - 2023-01-26774Americans2Moose9ALSommaire du match
114 - 2023-01-28795Americans4Wild5ALSommaire du match
118 - 2023-02-01805Wolves-Americans-
128 - 2023-02-11833Wranglers-Americans-
130 - 2023-02-13854Americans-Reign-
132 - 2023-02-15868Americans-Gulls-
135 - 2023-02-18893Americans-Barracuda-
138 - 2023-02-21912Marlies-Americans-
140 - 2023-02-23921Americans-Crunch-
141 - 2023-02-24930Americans-Checkers-
143 - 2023-02-26947Bears-Americans-
145 - 2023-02-28958Monsters-Americans-
147 - 2023-03-02974Americans-Bruins-
149 - 2023-03-04990Phantoms-Americans-
151 - 2023-03-061007Condors-Americans-
152 - 2023-03-071017Americans-Islanders-
154 - 2023-03-091025Stars-Americans-
156 - 2023-03-111040Wolf Pack-Americans-
158 - 2023-03-131061Americans-Marlies-
160 - 2023-03-151076Americans-Bears-
162 - 2023-03-171091Americans-Phantoms-
164 - 2023-03-191108Bruins-Americans-
166 - 2023-03-211124Admirals-Americans-
169 - 2023-03-241148Comets-Americans-
170 - 2023-03-251157Americans-Islanders-
172 - 2023-03-271171Rocket-Americans-
176 - 2023-03-311200Wolf Pack-Americans-
177 - 2023-04-011206Americans-Phantoms-
180 - 2023-04-041229Americans-Checkers-
182 - 2023-04-061248Americans-Griffins-
184 - 2023-04-081257Wolves-Americans-
186 - 2023-04-101276Americans-Wolf Pack-
187 - 2023-04-111285Americans-Comets-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
189 - 2023-04-131302Senators-Americans-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
-16 0 - 0.00% 0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
1,251,266$ 2,187,288$ 0$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 1,251,266$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 74 11,573$ 856,402$




TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison régulière
282215202115252359-10741112501112123177-5441102701003129182-535425242968121097856727170897873928280781184314393416117.89%3289172.26%01475271654.31%1210237650.93%803141956.59%1969139119635851024502
382244702135211322-11141132202004111156-4541112500131100166-6664211367578230847943256408428458334306122162713782834014.13%2545677.95%1964238640.40%1235365333.81%475126937.43%14259642598617944400
4824626011532451816441241200041132914141221401112113902310824544168606010472632791092095489424037401219169358511920.34%5087784.84%61629312452.14%1473298149.41%582115950.22%2042139718996391019514
582403302151263200634120180200113110526412015001501329537962633756382100977881288809299411001313888934919242224018.02%1413873.05%0886268732.97%1020319231.95%401118633.81%198314592032534942465
68231400332328927415411816021221701343641132401201119140-217828953182042011210666325901035110210954009115743121881903719.47%1903482.11%21201285442.08%1345380635.34%504130438.65%174312282263570956453
782116201323173361-188415320120177177-100416300012296184-8834173303476110715148276509269019105065138524121791883418.09%992376.77%0717253628.27%1121441725.38%312124225.12%13879372640579925403
882463101112395261134412911000102101228841172001102185139469939568410795401661458237790127912691212306888334818811944925.26%1432880.42%31652302954.54%1453303547.87%755140853.62%211215751864519965497
98239310153331230210412211013311621214141172000202150181-3194312557869230130948433160107510881108313185435320271974824.37%1563776.28%01469304248.29%1265285744.28%680148545.79%2080150718625421023521
108240280135530127229412311001331481153341171701222153157-410030152983023981029511308810211000104855281482636718052215926.70%1573577.71%31578300552.51%1450274852.77%720136752.67%2114154518525531011516
1150133200113231267-362551700003107129-222581500110124138-1432231415646101046660422707477757273717965271741098872225.29%802963.75%01107185359.74%668122254.66%54897856.03%13319931088304600315
Total Saison régulière78831138201420283326722799-127394170175098141813711327443941412070512141513011472-17175926724631730321332021029865549294371768967897488073325379293495217612250850920.30%205644878.21%15126782723246.56%122403028740.41%57801281745.10%181911299920064544794134590
Séries éliminatoires
41688000004045-5844000001820-2844000002225-316407211201012161157201901781915581592673671402215.71%991782.83%027066140.85%21665832.83%7124528.98%38525939312819698
840400000719-1220200000510-52020000029-707132000023211803147402278025801218.33%10370.00%02812023.33%5022022.73%135822.41%6947123284719
97340000021201321000001073413000001113-262138590008672590888371324935119515213.33%21576.19%010125539.61%10733531.94%3010428.85%154105201539043
10514000002325-231200000161602020000079-2223396200986019256664822234692413514428.57%11281.82%07617144.44%10523844.12%429643.75%12588147437234
Total Séries éliminatoires3212200000091109-181679000004953-416511000004256-14249116225301930312011415637535632413434013677771812916.02%1412780.85%0475120739.35%478145132.94%15650331.01%734501866254406195